Skip to main content
Log in

Design of Dual-Band Plasmon-Induced Transparent Effect Based on Composite Structure of Closed-Ring and Square Patch

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a dual-band transparent window terahertz metamaterial consisting of a closed-ring resonator and a square patch. This structure can achieve two transparent windows with transmission intensity of more than 90%. The formation of the two windows can be attributed to the coupling of the localized resonance modes between the closed-ring and square patch. The influence of the geometrical dimensions of the closed-ring resonator and the square patch on the transmitted spectrum is also discussed; it is found that the change of sizes can strongly affect the frequencies of the two transparent windows. This novel terahertz metamaterial may open up new avenues toward the control of terahertz waves in many technology-related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lahiri B, Mcmeekin SG, Khokhar AZ, Rue RMDL, Johnson NP (2010) Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt Express 18:3210–3218

    Article  CAS  Google Scholar 

  2. Zhang J, Xiong LI, Zhang T, Zhao Z, Luo X (2016) Tunable THz filter based on double split-ring resonator with flexible cantilever. Opto-Electron Eng 43:77–81

    Google Scholar 

  3. Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SR (2006) Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt Express 14:6778–6787

    Article  Google Scholar 

  4. Plum E, Zhou J, Dong J, Fedotov VA, Koschny T, Soukoulis CM, Zheludev NI (2009) Negative refractive index due to chirality. Phys Rev B 79:035407

    Article  Google Scholar 

  5. Liu N, Liu H, Zhu S, Giessen H (2009) Stereometamaterials. Nat Photonics 3:157–162

    Article  CAS  Google Scholar 

  6. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  7. Longdell JJ, Fraval E, Sellars MJ (2005) Stopped light with storage times greater than 1 second using EIT in a solid. Phys Rev Lett 95:063601

    Article  CAS  Google Scholar 

  8. Totsuka K, Kobayashi N, Tomita M (2007) Slow light in coupled-resonator-induced transparency. Phys Rev Lett 98:213904

    Article  Google Scholar 

  9. Yanik MF, Suh W, Wang Z, Fan S (2004) Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys Rev Lett 93:233903

    Article  Google Scholar 

  10. Zhang XQ, Li Q, Cao W, Gu JQ, Singh RJ, Tian Z, Han JG, Zhang WL (2013) Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial. IEEE J Select Top Quantun Electron 19:8400707

    Article  Google Scholar 

  11. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmoninduced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  12. Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL (2008) Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 101:253903

    Article  CAS  Google Scholar 

  13. Singh R, Rockstuh C, Lederer F, Zhang W (2009) Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B 79:085111

    Article  Google Scholar 

  14. Tassin P, Zhang L, Koschny T, Economou EN, Souboulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901

    Article  CAS  Google Scholar 

  15. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  16. Liao CL, Fu GL, Xia SX, Li HJ, Zhai X, Wang LL (2018) Tunable plasmon-induced transparency based on graphene nanoring coupling with graphene nanostrips. J Mod Opt 65:1–7

    Article  Google Scholar 

  17. Habib M, RRashed A, Ozbay E, Caglayan H (2018) Graphene-based tunable plasmon induced transparency in gold strips. Opt Mater Express 8:1069–1074

    Article  CAS  Google Scholar 

  18. Devi KM, Islam M, Chowdhury DR, Sarma AK, Kumar G (2017) Plasmon induced transparency in graphene based terahertz metamaterials. Europhys Lett 120:27005

    Article  Google Scholar 

  19. Wang ZJ, Guo SH, Li JJ, Wang FY (2014) Dual-band terahertz filters with sharp slope rate of edge based on two-layered composite metamaterial. J Chem Pharm Res 6:96–100

    Google Scholar 

  20. Yen TJ (2011) A high-transmission dualband terahertz bandpass filter by exciting multiresonance of metamaterials. Proceedings of SPIE 8070:80700V

    Article  Google Scholar 

  21. Bernussi AA, Holtz M, Saed M, Vegesna S, Kuryatkov V (2013) Tunable dual-band terahertz metamaterial bandpass filters. Opt Lett 38:2382–2384

    Article  Google Scholar 

  22. Drysdale TD, Gregory IS, Baker C, Linfield EH, Tribe WR (2004) Transmittance of a tunable filter at terahertz frequencies. Appl Phys Lett 85:5173–5175

    Article  CAS  Google Scholar 

  23. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  24. Yahiaoui R, Strikwerda AC, Jepsen PU (2016) Terahertz plasmonic structure with enhanced sensing capabilities. IEEE Sensors J 16:2484–2488

    Article  Google Scholar 

  25. Cong L, Tan S, Yahiaoui R, Yan F, Zhang W, Singh R (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl Phys Lett 106:031107

    Article  Google Scholar 

  26. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  CAS  Google Scholar 

  27. Yahiaoui R, Hanai K, Takano K, Nishida T, Miya-maru F, Nakajima M, Hangyo M (2015) Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators. Opt Lett 40:3197–3200

    Article  Google Scholar 

  28. Yahiaoui R, Ouslimani HH (2017) Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber. J Appl Phys 122:093104

    Article  Google Scholar 

  29. Na L, Giessen H (2015) Coupling effects in optical metamaterials. Angew Chem Int Ed 49:9838–9852

    Google Scholar 

  30. Na L, Kaiser S, Giesse H (2010) Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv Mater 20:4521–4525

    Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 11647143, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20160189, and in part by the Fundamental Research Funds for the Central Universities under Grant JUSRP51721B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Niu, Q., Wang, BX. et al. Design of Dual-Band Plasmon-Induced Transparent Effect Based on Composite Structure of Closed-Ring and Square Patch. Plasmonics 14, 533–538 (2019). https://doi.org/10.1007/s11468-018-0831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0831-2

Keywords

Navigation