Skip to main content
Log in

All-Optical Cross-Bar Switch Based on a Low-Loss Suspended Graphene Plasmonic Coupler

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene-based optical switches are one of the promising building blocks for future optical integrated circuits. For the first time in this paper, a novel all-optical graphene-based cross-bar switch is proposed. The structure is based on our recently reported suspended graphene plasmonic coupler. The high carrier mobility of the suspended graphene layer results in long propagation lengths of surface plasmon polaritons that are essential for realizing cross-bar optical switching. Dispersion relations of surface plasmon polaritons of a simple suspended graphene-based structure are derived in the nonlinear state. The relations are employed to analyze the device using the effective index method (EIM) that reduces the time and memory requirements, significantly. The switching length at the wavelength of 10 μm is as short as 2.6 μm. The required optical pump intensity is calculated as approximately 77 MW/cm2. The switching operation of the structure is investigated using the finite-difference time-domain method. According to the presented results, extinction ratios of as high as 11.18 and 11.1 dB are obtained at the bar and cross output ports, respectively. A wide spectral width of more than 1 μm is also calculated. Finally, the transient response of the structure is investigated and the switching time of less than 3 ps is predictable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843

    Article  CAS  PubMed  Google Scholar 

  2. Maiti R, Sinha TK, Mukherjee S, Adhikari B, Ray SK (2016) Enhanced and selective photodetection using graphene-stabilized hybrid plasmonic silver nanoparticles. Plasmonics 11(5):1297–1304

    Article  CAS  Google Scholar 

  3. Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5:411–415

    Article  CAS  Google Scholar 

  4. Zhu B, Ren G, Gao Y, Wu B, Wan C, Jian S (2016) Magnetically-controlled logic gates of graphene plasmons based on non-reciprocal coupling. IEEE J Sel Top Quantum Electron 22(2):4600307

    Article  CAS  Google Scholar 

  5. Farmani A, Zarifkar A, Sheikhi MH, Miri M (2017) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattice Microst 112:404–414

    Article  CAS  Google Scholar 

  6. Bahadori-Haghighi S, Ghayour R, Sheikhi MH (2017) Three-dimensional analysis of an ultrashort optical cross-bar switch based on a graphene plasmonic coupler. J Lightwave Technol 35(11):2211–2217

    Article  CAS  Google Scholar 

  7. Zheng P, Yang H, Fan M, Hu G, Zhang R, Yun B, Cui Y (2018) A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide. Plasmonics. https://doi.org/10.1007/s11468-018-0719-1

  8. Krishnamurthy V, Chen Y, Wang Q (2014) MZI-semiconductor-based all-optical switch with switching gain. J Lightwave Technol 32(13):2433–2439

    Article  Google Scholar 

  9. Shcherbakov MR, Vabishchevich PP, Shorokhov AS, Chong KE, Choi DY, Staude I, Miroshnichenko AE, Neshev DN, Fedyanin AA, Kivshar YS (2015) Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett 15(10):6985–6990

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen YR (2014) Ultrafast all-optical graphene modulator. Nano Lett 14(2):955–959

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Tao J, Chen ZH, Huang XG (2016) All-optical controlling based on nonlinear graphene plasmonic waveguides. Opt Express 24(19):22169–22176

    Article  CAS  PubMed  Google Scholar 

  12. Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32

    Article  Google Scholar 

  13. Krasavin AV, Zayats AV (2010) Silicon-based plasmonic waveguides. Opt Express 18(11):11791–11799

    Article  CAS  PubMed  Google Scholar 

  14. Zenin VA, Choudhury S, Saha S, Shalaev VM, Boltasseva A, Bozhevolnyi SI (2017) Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. Opt Express 25(11):12295–12302

    Article  CAS  PubMed  Google Scholar 

  15. Ooi KJA, Chu HS, Ang LK, Bai P (2013) Mid-infrared active graphene nanoribbon plasmonic waveguide devices. J Opt Soc Am B 30(12):3111–3116

    Article  CAS  Google Scholar 

  16. He S, Zhang X, He Y (2013) Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt Express 21(25):30664–30673

    Article  CAS  PubMed  Google Scholar 

  17. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, de Abajo FJG (2012) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  CAS  PubMed  Google Scholar 

  18. Zheng J, Yu L, He S, Dai D (2015) Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate. Sci Rep 5:7987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu W, Zhu ZH, Liu K, Zhang JF, Yuan XD, Lu QS, Qin SQ (2015) Dielectric loaded graphene plasmon waveguide. Opt Express 23(4):5147–5153

    Article  CAS  PubMed  Google Scholar 

  20. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495

    Article  CAS  PubMed  Google Scholar 

  21. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355

    Article  CAS  Google Scholar 

  22. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209

    Article  CAS  PubMed  Google Scholar 

  23. Lv H, Wu H, Liu J, Yu J, Niu J, Li J, Xu Q, Wu X, Qian H (2013) High carrier mobility in suspended-channel graphene field effect transistors. Appl Phys Lett 103:193102

    Article  CAS  Google Scholar 

  24. Freitag M, Low T, Avouris P (2013) Increased responsivity of suspended graphene photodetectors. Nano Lett 13(4):1644–1648

    Article  CAS  PubMed  Google Scholar 

  25. Patil V, Capone A, Strauf S, Yang EH (2013) Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors. Sci Rep 3:2791

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bahadori-Haghighi S, Ghayour R, Sheikhi MH (2018) Design and analysis of low loss plasmonic waveguide and directional coupler based on pattern-free suspended graphene sheets. Carbon 129:653–660

    Article  CAS  Google Scholar 

  27. Nuzaihan M, Hashim U, Arshad MKM et al (2016) Top-down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications. PLoS One 11:0152318

    Google Scholar 

  28. Cardenas J, Poitras CB, Robinson JT, Preston K, Chen L, Lipson M (2009) Low loss etchless silicon photonic waveguides. Opt Express 17:4752–4757

    Article  CAS  PubMed  Google Scholar 

  29. Li P, Chen C, Zhang J, Li S, Sun B, Bao Q (2014) Graphene-based transparent electrodes for hybrid solar cells. Front Mater 1:26

    Article  Google Scholar 

  30. Xu W, Zhu ZH, Liu K, Zhang JF, Yuan XD, Lu QS, Qin SQ (2015) Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide. Opt Lett 40(7):1603–1606

    Article  CAS  PubMed  Google Scholar 

  31. Qi Z, Zhu Z, Xu W, Zhang J, Guo C, Liu K, Yuan X, Qin S (2016) Electrically tuneable directional coupling and switching based on multimode interference effect in dielectric loaded graphene plasmon waveguides. J Opt 18(6):1–5

    Article  CAS  Google Scholar 

  32. Jiang L, Guo J, Wu L, Dai X, Xiang Y (2015) Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene. Opt Express 23(24):31181–31191

    Article  CAS  PubMed  Google Scholar 

  33. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Ghayour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadori-Haghighi, S., Ghayour, R. & Sheikhi, M.H. All-Optical Cross-Bar Switch Based on a Low-Loss Suspended Graphene Plasmonic Coupler. Plasmonics 14, 447–456 (2019). https://doi.org/10.1007/s11468-018-0823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0823-2

Keywords

Navigation