Skip to main content
Log in

Principle and Application of Tip-enhanced Raman Scattering

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tip-enhanced Raman scattering (TERS), as a combination of scanning probe microscopy (SPM) and surface-enhanced Raman spectroscopy (SERS) makes a huge progress in high sensitive optical and spectral analysis field by plasmon and plasmonic gradient enhancement. We introduce the mechanisms and setup of TERS with several experimental cases. Among them, high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) is introduced in detail by describing the plasmon-driven reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shiohara A, Wang Y, Liz-Marzán LM (2014) Recent approaches toward creation of hot spots for SERS detection. J Photochem Photobiol C: Photochem Rev 21:2–25

    Article  CAS  Google Scholar 

  2. Yang X, Yu H, Guo X, Ding Q, Pullerits T, Wang R, Zhang G, Liang W, Sun M (2017) Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater Today Energy 5:72–78

    Article  Google Scholar 

  3. Ding Q, Chen M, Fang Y, Zhang Z, Sun M (2017) Plasmon-driven Diazo coupling reactions of p-Nitroaniline via −NH2 or −NO2 in atmosphere environment. J Phys Chem C 121(9):5225–5231

    Article  CAS  Google Scholar 

  4. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  5. Wessel J (1985) Surface-enhanced optical microscop. J Opt Soc Am B 2:1538–1541

    Article  CAS  Google Scholar 

  6. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183:333–336

    Article  CAS  Google Scholar 

  7. Pettinger B, Picardi G, Schuster R, Ertl G (2000) Surface enhanced Raman spectroscopy: towards single Moleculer spectroscopy (E). Electrochemistry-TOKYO 68(12):942–949

    CAS  Google Scholar 

  8. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131–136

    Article  CAS  Google Scholar 

  9. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826

    Article  CAS  Google Scholar 

  10. Metiu H, Dos P (1984) Rev Phys Chem 35:507–536

    Article  CAS  Google Scholar 

  11. Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  12. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Condens Matter 4:1143–1212

    Article  CAS  Google Scholar 

  13. Xia L, Chen M, Zhao X, Zhang Z, Xia J, Xu H, Sun M (2014) Visualized method of chemical enhancement mechanism on SERS and TERS. J Raman Spectrosc 45(7):533–540

    Article  CAS  Google Scholar 

  14. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  15. Wang D, Zhu W, Best MD, Camden JP, Crozier KB (2013) Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett 13(5):2194–2198

    Article  CAS  PubMed  Google Scholar 

  16. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67

    Article  CAS  PubMed  Google Scholar 

  17. Xie C, Mu C, Cox JR, Gerton JM (2006) Tip-enhanced fluorescence microscopy of high-density samples. Appl Phys Lett 89(14):143117

    Article  CAS  Google Scholar 

  18. Ma Z, Gerton JM, Wade LA, Quake SR (2006) Fluorescence near-field microscopy of DNA at sub-10 nm resolution. Phys Rev Lett 97(26):260801

    Article  CAS  PubMed  Google Scholar 

  19. Dong ZC, Guo XL, Trifonov AS, Dorozhkin PS, Miki K, Kimura K, Yokoyama S, Mashiko S (2004) Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys Rev Lett 92(8):086801

    Article  CAS  PubMed  Google Scholar 

  20. Steidtner J, Pettinger B (2008) Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100(23):236101

    Article  CAS  PubMed  Google Scholar 

  21. Sun M, Zhang Z, Zheng H, Xu H (2012) In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep 2:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013a) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452):82–86

    Article  CAS  PubMed  Google Scholar 

  23. Klingsporn JM, Jiang N, Pozzi EA, Sonntag MD, Chulhai D, Seideman T, Jensen L, Hersam MC, Van Duyne RP (2014) Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J Am Chem Soc 136(10):3881–3887

    Article  CAS  PubMed  Google Scholar 

  24. Fang YR, Zhang ZL, Sun MT (2016) High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. Rev Sci Instrum 87:033104

    Article  CAS  PubMed  Google Scholar 

  25. Domke KF, Pettinger B (2010) Studying surface chemistry beyond the diffraction limit: 10 years of TERS. ChemPhysChem 11(7):1365–1373

    Article  CAS  PubMed  Google Scholar 

  26. Bailoa E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37:921–930

    Article  CAS  Google Scholar 

  27. Langeluddecke L, Singh P, Deckert V (2015) Exploring the Nanoscale: fifteen years of tip-enhanced Raman spectroscopy. Appl Spectrosc 69(12):1357–1371

    Article  CAS  PubMed  Google Scholar 

  28. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(21):1102–1106

    Article  CAS  PubMed  Google Scholar 

  29. Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2012) Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett 12(10):5061–5067

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Sheng S, Wang R, Sun M (2016) Tip-enhanced Raman spectroscopy. Anal Chem 88(19):9328–9346

    Article  CAS  PubMed  Google Scholar 

  31. Rasmussen A, Deckert V (2006) Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc 37(1–3):311–317

    Article  CAS  Google Scholar 

  32. Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed Engl 47(9):1658–1661. doi:10.1002/anie.200704054

    Article  CAS  PubMed  Google Scholar 

  33. Wood BR, Bailo E, Khiavi MA, Tilley L, Deed S, Deckert-Gaudig T, McNaughton D, Deckert V (2011) Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett 11(5):1868–1873

    Article  CAS  PubMed  Google Scholar 

  34. Pozzi EA, Sonntag MD, Jiang N, Klingsporn JM, Hersam MC, Van Duyne RP (2013) Tip-enhanced Raman imaging: an emergent tool for probing biology at the Nanoscale. ACS Nano 7:885–888

    Article  CAS  PubMed  Google Scholar 

  35. Treffer R, Bohme R, Deckert-Gaudig T, Lau K, Tiede S, Lin X, Deckert V (2012) Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem Soc Trans 40(4):609–614

    Article  CAS  PubMed  Google Scholar 

  36. Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 66:1842–1844

    Article  CAS  Google Scholar 

  37. Rensen WHJ, van Hulst NF, Kämmer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl Phys Lett 77(10):1557–1559

    Article  CAS  Google Scholar 

  38. Kharintsev SS, Hoffmann GG, Dorozhkin PS, Gd W, Loos J (2007) Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging. Nanotechnology 18(31):315502

    Article  CAS  Google Scholar 

  39. Rodriguez RD, Sheremet E, Muller S, Gordan OD, Villabona A, Schulze S, Hietschold M, Zahn DR (2012) Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy. Rev Sci Instrum 83(12):123708

    Article  CAS  PubMed  Google Scholar 

  40. Stadler J, Schmid T, Zenobi R (2012) Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nano 4(6):1856–1870

    CAS  Google Scholar 

  41. Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603(10–12):1335–1341

    Article  CAS  Google Scholar 

  42. Jain P, Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang WH (2009) Tip-enhanced Raman spectroscopy – its status, challenges and future directions. Chem Phys Lett 472(1–3):1–13

    Google Scholar 

  43. Khiavi MA, Wood BR, Talemi PH, Downes A, Mcnaughton D, Mechler A (2012) Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield. J Raman Spectrosc 43(2):173–180

    Article  CAS  Google Scholar 

  44. Kharintsev SS, Hoffmann GG, Fishman AI, Salakhov MK (2013a) Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy. J Phys D Appl Phys 46(14):145501

    Article  CAS  Google Scholar 

  45. Zhang MQ, Wang R, Zhu ZD, Wang J, Tian Q (2013b) Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy. J Opt 15(5):055006

    Article  CAS  Google Scholar 

  46. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Near-field Raman scattering enhanced by a metallized tip. Chem Phys Lett 335:369–374

    Article  CAS  Google Scholar 

  47. Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C 111:1733–1738

    Article  CAS  Google Scholar 

  48. Xu G, Liu Z, Xu K, Zhang Y, Zhong H, Fan Y, Huang Z (2012) Constant current etching of gold tips suitable for tip-enhanced Raman spectroscopy. Rev Sci Instrum 83(10):103708

    Article  CAS  PubMed  Google Scholar 

  49. Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface Plasmons onto metallic tips: a Nanoconfined light source. Nano Lett 7(9):2784–2788

    Article  CAS  PubMed  Google Scholar 

  50. Downes A, Salter D, Elfick A (2006) Heating effects in tip-enhanced optical microscopy. Opt Express 14:5216–5622

    Article  PubMed  Google Scholar 

  51. Ren B, Picardi G, Pettinger B (2004) Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev Sci Instrum 75(4):837–841

    Article  CAS  Google Scholar 

  52. Pienpinijtham P, Han XX, Suzuki T, Thammacharoen C, Ekgasit S, Ozaki Y (2012) Micrometer-sized gold nanoplates: starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). Phys Chem Chem Phys 14(27):9636–9641

    Article  CAS  PubMed  Google Scholar 

  53. Kharintsev SS, Rogov AM, Kazarian SG (2013b) Nanopatterning and tuning of optical taper antenna apex for tip-enhanced Raman scattering performance. Rev Sci Instrum 84(9):093106

    Article  CAS  PubMed  Google Scholar 

  54. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-Plasmon focusing for Nano-Raman spectroscopy. J Phys Chem Lett 1(24):3427–3432

    Article  CAS  Google Scholar 

  55. Deckert-Gaudig T, Deckert V (2009) Ultraflat transparent gold nanoplates--ideal substrates for tip-enhanced Raman scattering experiments. Small 5(4):432–436

    Article  CAS  PubMed  Google Scholar 

  56. Ossikovski R, Nguyen Q, Picardi G (2007) Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys Rev B 75(4):045412

    Article  CAS  Google Scholar 

  57. Hartschuh A, Anderson N, Nobotny L (2003) Near-field Raman spectroscopy using a sharp metal tip. J Microsc 210:234–240

    Article  CAS  PubMed  Google Scholar 

  58. Saito Y, Hayazawa N, Kataura H, Murakami T, Tsukagoshi K, Inouye Y, Kawata S (2005) Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chem Phys Lett 410(1–3):136–141

    Article  CAS  Google Scholar 

  59. Yano TA, Verma P, Saito Y, Ichimura T, Kawata S (2009) Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nat Photonics 3:473–477

    Article  CAS  Google Scholar 

  60. Blum C, Schmid T, Opilik L, Weidmann S, Fagerer SR, Zenobi R (2012) Understanding tip-enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study. J Raman Spectrosc 43(12):1895–1904

    Article  CAS  Google Scholar 

  61. Sun M, Fang Y, Zhang Z, Xu H (2013) Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy. Phys Rev E Stat Nonlinear Soft Matter Phys 87(2):020401

    Article  CAS  Google Scholar 

  62. Sun M, Zhang Z, Chen L, Sheng S, Xu H (2014) Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Adv Opt Mater 2(1):74–80

    Article  CAS  Google Scholar 

  63. Sun M, Fang Y, Yang Z, Xu H (2009) Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering. Phys Chem Chem Phys 11(41):9412–9419

    Article  CAS  PubMed  Google Scholar 

  64. Zhang WH, Cui XD, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. Nano Lett 7(5):1401–1405

    Article  CAS  PubMed  Google Scholar 

  65. Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2004) Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew Chem Int Ed Engl 44(1):139–142

    Article  CAS  PubMed  Google Scholar 

  66. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of Thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  PubMed  Google Scholar 

  67. Sun MT, Zhang SP, Fang YR, Yang ZL, Wu DY, Dong B, Xu HX (2009) Near- and deep-ultraviolet resonance Raman spectroscopy of Pyrazine-Al4 complex and Al3-Pyrazine-Al3 junction. J Phys Chem C 103:19328–19334

    Article  CAS  Google Scholar 

  68. Dörfer T, Schmitt M, Popp J (2007) Deep-UV surface-enhanced Raman scattering. J Raman Spectrosc 38(11):1379–1382

    Article  CAS  Google Scholar 

  69. Hecht L, Clarkson J, Smith BJE, Springett R (2006) A new single grating spectrograph for ultraviolet Raman scattering studies. J Raman Spectrosc 37(5):562–573

    Article  CAS  Google Scholar 

  70. Shafaat HS, Sanchez KM, Neary TJ, Kim JE (2009) Ultraviolet resonance Raman spectroscopy of a β-sheet peptide: a model for membrane protein folding. J Raman Spectrosc 40(8):1060–1064

    Article  CAS  Google Scholar 

  71. Fodor SPA, Spiro TG (1986) Ultraviolet resonance Raman spectroscopy of DNA with 200-266-nm laser excitation. J Am Chem Soc 108:3198–3205

    Article  CAS  Google Scholar 

  72. Asher SA (1993) UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Anal Chem 65(4):201A

    CAS  PubMed  Google Scholar 

  73. Shashilov VA, Lednev IK (2008) 2D correlation deep UV resonance Raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J Am Chem Soc 130:309–317

    Article  CAS  PubMed  Google Scholar 

  74. Huang C, Balakrishnan G, Spiro TG (2006) Protein secondary structure from deep-UV resonance Raman spectroscopy. J Raman Spectrosc 37(1–3):277–282

    Article  CAS  Google Scholar 

  75. Konorov SO, Georg Schulze H, Addison CJ, Haynes CA, Blades MW, Turner RFB (2009) Ultraviolet resonance Raman spectroscopy of locked single-stranded oligo(dA) reveals conformational implications of the locked ribose in LNA. J Raman Spectrosc 40(9):1162–1171

    Article  CAS  Google Scholar 

  76. Taguchi A, Hayazawa N, Furusawa K, Ishitobi H, Kawata S (2009) Deep-UV tip-enhanced Raman scattering. J Raman Spectrosc 40(9):1324–1330

    Article  CAS  Google Scholar 

  77. Fujiwara A, Mizutani Y (2008) Photoinduced electron transfer in glucose oxidase: a picosecond time-resolved ultraviolet resonance Raman study. J Raman Spectrosc 39(11):1600–1605

    Article  CAS  Google Scholar 

  78. Lin X, Ren B, Yang ZL, Liu GK, Tian ZQ (2005) Surface-enhanced Raman spectroscopy with ultraviolet excitation. J Raman Spectrosc 36(6–7):606–612

    Article  CAS  Google Scholar 

  79. Ren B, Lin XF, Yang ZL, Liu GK, Aroca RF, Mao BW, Tian ZQ (2003) Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc 125:9598–9599

    Article  CAS  PubMed  Google Scholar 

  80. Yang Z, Li Q, Fang Y, Sun M (2011) Deep ultraviolet tip-enhanced Raman scattering. Chem Commun (Camb) 47(32):9131–9133

    Article  CAS  Google Scholar 

  81. Martin OJF, Girard C (1997) Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl Phys Lett 70(6):705–707

    Article  Google Scholar 

  82. Yang ZL, Li QH, Ren B, Tian ZQ (2011) Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem Commun 47:3909–3911

    Article  CAS  Google Scholar 

  83. Li JF, Huang YF, Ding Y, Yang ZL, Songbo L, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Zhong QT (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  PubMed  Google Scholar 

  84. Kim K, Lee I, Lee SJ (2003) Photolytic reduction of 4-nitrobenzenethiol on Au mediated via Ag nanoparticles. Chem Phys Lett 377(1–2):201–204

    Article  CAS  Google Scholar 

  85. Steidtner J, Pettinger B (2007) High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. Rev Sci Instrum 78(10):103104

    Article  CAS  PubMed  Google Scholar 

  86. Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2012) Correction to observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett 12(12):6506–6506

    Article  CAS  Google Scholar 

  87. Lin XD, Uzayisenga V, Li JF, Fang P-P, Wu DY, Ren B, Tian ZQ (2012) Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J Raman Spectrosc 43(1):40–45

    Article  CAS  Google Scholar 

  88. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Z, Xu P, Yang X, Liang W, Sun M (2016) Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. J Photochem Photobiol C: Photochem Rev 27:100–112

    Article  CAS  Google Scholar 

  90. Sun M, Xu H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18):2777–2786

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Z, Deckert-Gaudig T, Singh P, Deckert V (2015) Single molecule level plasmonic catalysis - a dilution study of p-nitrothiophenol on gold dimers. Chem Commun (Camb) 51(15):3069–3072

    Article  CAS  Google Scholar 

  92. Fang Y, Li Y, Xu H, Sun M (2010) Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 26(11):7737–7746

    Article  CAS  PubMed  Google Scholar 

  93. Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-Aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132:9244–9246

    Article  CAS  PubMed  Google Scholar 

  94. Dai Z, Xiao XH, Wu W, Zhang YP, Liao L, Guo SS, Ying JJ, Shan CX, Sun MT, Jiang CZ (2015) Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light: Sci Appl 4(10):e342

    Article  CAS  Google Scholar 

  95. Kang L, Chu J, Zhao H, Xu P, Sun M (2015) Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. J Mater Chem C 3(35):9024–9037

    Article  CAS  Google Scholar 

  96. Ding Q, Shi Y, Chen M, Li H, Yang X, Qu Y, Liang W, Sun M (2016) Ultrafast dynamics of Plasmon-Exciton interaction of Ag nanowire- Graphene hybrids for surface catalytic reactions. Sci Rep 6:32724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun M, Zhang Z, Wang P, Li Q, Ma F, Xu H (2013) Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Sci Appl 2(11):e112

    Article  CAS  Google Scholar 

  98. Huang Y, Fang Y, Zhang Z, Zhu L, Sun M (2014) Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light: Sci Appl 3(8):e199

    Article  CAS  Google Scholar 

  99. Zhang Z, Fang Y, Wang W, Chen L, Sun M (2016) Propagating surface Plasmon Polaritons: towards applications for remote-excitation surface catalytic reactions. Adv Sci (Weinh) 3(1):1500215

    Article  CAS  Google Scholar 

  100. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 92(22):220801

    Article  CAS  PubMed  Google Scholar 

  101. Dong B, Fang Y, Xia L, Xu H, Sun M (2011) Is 4-nitrobenzenethiol converted to p,p′-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction? J Raman Spectrosc 42(6):1205–1206

    Article  CAS  Google Scholar 

  102. Merlen A, Chaigneau M, Coussan S (2015) Vibrational modes of aminothiophenol: a TERS and DFT study. Phys Chem Chem Phys 17(29):19134–19138

    Article  CAS  PubMed  Google Scholar 

  103. Zhang Z, Sun M, Ruan P, Zheng H, Xu H (2013c) Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5(10):4151–4155

    Article  CAS  PubMed  Google Scholar 

  104. Kumar N, Stephanidis B, Zenobi R, Wain AJ, Roy D (2015) Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. Nano 7(16):7133–7137

    CAS  Google Scholar 

  105. Fujimori H, Kakihana M, Ioku K, Goto S, Yoshimura M (2001) Advantage of anti-stokes Raman scattering for high-temperature measurements. Appl Phys Lett 79(7):937–939

    Article  CAS  Google Scholar 

  106. Moskovits M, DiLella DP (1980) Surface-enhanced Raman spectroscopy of benzene and benzene-d6 adsorbed on silver. J Chem Phys 73(12):6068–6075

    Article  CAS  Google Scholar 

  107. Moskovits M, DiLella DP (1982) Intense quadrupole transitions in the spectra of molecules near metal surfaces. J Chem Phys 77(4):1655–1660

    Article  CAS  Google Scholar 

  108. Christopher P, Xin H, Linic S (2011) Nat Chem 3:467

    Article  CAS  PubMed  Google Scholar 

  109. Ayars E, Hallen HD (2000) Electric field gradient effects in Raman spectroscopy. Phys Rev Lett 85(19):4180–4183

    Article  CAS  PubMed  Google Scholar 

  110. Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39(12):4820–4844

    Article  CAS  PubMed  Google Scholar 

  111. Pallaoro A, Braun GB, Reich NO, Moskovits M (2010) Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small 6:618

    Article  CAS  PubMed  Google Scholar 

  112. Sun M, Huang Y, Xia L, Chen X, Xu H (2011) The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol top, p′-dimercaptoazobenzene on Au, Ag, and Cu Colloids. J Phys Chem C 115(19):9629–9636

    Article  CAS  Google Scholar 

  113. Gao S, Ueno K, Misawa H (2011) Plasmonic antenna effects on photochemical reactions. Acc Chem Res 44:251

    Article  CAS  PubMed  Google Scholar 

  114. Buckingham AD (1967) Adv Chem Phys 12:107

    CAS  Google Scholar 

  115. Fleischmann M, Hendra PJ, Quillan M (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  116. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. J Electroanal Chem Interfacial Electrochem 84(1):1–20

    Article  CAS  Google Scholar 

  117. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  118. Campion A, Kambhampati P (1985) Surface-enhanced Raman scattering. J Opt Soc Am B 2:1538–1541

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374353 and 91436102), Municipal Science and Technology Project (No. Z17111000220000), and National Basic Research Program of China (Grant No. 2016YFA02008000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongming Wang or Jingang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Lin, W., Wang, J. et al. Principle and Application of Tip-enhanced Raman Scattering. Plasmonics 13, 1343–1358 (2018). https://doi.org/10.1007/s11468-017-0638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0638-6

Keywords

Navigation