Skip to main content
Log in

Tunable Plasmonic Silver Nanodomes for Surface-Enhanced Raman Scattering

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) is an emerging analytical method used in biological and non-biological structure characterization. Since the nanostructure plasmonic properties is a significant factor for SERS performance, nanostructure fabrication with tunable plasmonic properties are crucial in SERS studies. In this study, a novel method for fabrication of tunable plasmonic silver nanodomes (AgNDs) is presented. The convective-assembly method is preferred for the deposition of latex particles uniformly on a regular glass slide and used as a template for polydimethylsiloxane (PDMS) to prepare nanovoids on a PDMS surface. The obtained nanovoids on the PDMS are used as a mold for AgNDs fabrication. The nanovoids are filled with Ag deposition by the electrochemical method to obtain metallic AgNDs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used for characterization of the structural properties of all fabricated AgNDs. The optical properties of AgNDs are characterized with the evaluation of SERS activity of 4-aminothiphonel and rhodamine 6G. In addition to experimental characterizations, the finite difference time domain (FDTD) method is used for the theoretical plasmonic properties calculation of the AgNDs. The experimental and theoretical results show that the SERS performance of AgNDs is strongly dependent on the heights and diameters of the AgNDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  2. Atwater HA (2007) The promise of plasmonics. Sci Am 296:56–63

    Article  CAS  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  4. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  5. Van Duyne RP (2004) Molecular plasmonics. Science 306:985–986

    Article  CAS  Google Scholar 

  6. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  7. Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930

    Article  CAS  Google Scholar 

  8. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Ann Rev Phys Chem 51:41–63

    Article  CAS  Google Scholar 

  9. Schatz GC, Van Duyne RP (2002) Handbook of vibrational spectroscopy. Wiley, New York

    Google Scholar 

  10. Fleischman M, Hendra PJ, McQuillan AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  11. Jeanmaire DL, Van Duyne RP (1977) Surface raman spectroelectrochemistry 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  12. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  13. Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:1459–1461

    Google Scholar 

  14. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  15. Otto A (1984) In: Cardona M, Guntherodt G (eds) In light scattering in solids IV. Electronic scattering, spin effects, SERS and morphic effects. Springer-Verlag, Berlin

    Google Scholar 

  16. Persson BNJ (1981) On the theory of surface-enhanced Raman scattering. Chem Phys Lett 82:561–565

    Article  CAS  Google Scholar 

  17. Haynes C, Mcfarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:339A–346A

    Article  Google Scholar 

  18. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  19. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  20. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  21. Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165

    Article  CAS  Google Scholar 

  22. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192

    Article  CAS  Google Scholar 

  23. Kumar M, Reddy GB (2010) Tailoring surface plasmon resonance in ag:ZrO2 nanocomposite thin films. Phys E 43:470–474

    Article  CAS  Google Scholar 

  24. Kumar M, Suchand Sandeep CS, Kumar G, Mishra YK, Philip R, Reddy GB (2014) Plasmonic and nonlinear optical absorption properties of ag:ZrO2 nanocomposite thin films. Plasmonics 9:129–136

    Article  CAS  Google Scholar 

  25. Kumar M, Kumar T, Kumar Avasthi D (2015) Study of thermal annealing induced plasmonic bleaching in Ag:TiO2 nanocomposite thin films. Scr Mater 105:46–49

    Article  CAS  Google Scholar 

  26. Kumar M, Reddy GB (2016) Stability-inspired entrapment of Ag nanoparticles in ZrO2 thin films. Plasmonics 11:261–267

    Article  CAS  Google Scholar 

  27. Kumar M, Jangid T, Panchal V, Kumar P, Pathak A (2016) Effect of grazing angle cross-ion irradiation on Ag thin films. Nanoscale Res Lett 11:454

    Article  Google Scholar 

  28. Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) Surface-enhanced Raman sensors: early history and the development of sensors for quantitative Biowarfare agent and glucose detection. J Raman Spectrosc 36:471–484

    Article  CAS  Google Scholar 

  29. Grand J, de la Chapelle ML, Bijeon L-J, Adam P-M, Vial A, Royer P (2005) Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72:033407

    Article  Google Scholar 

  30. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  31. Felidj N, Aubard J, Lévi G, Krenn JR, Salerno G, Schider G, Lamprecht B, Leitner A, Aussengg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65:075419

    Article  Google Scholar 

  32. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–12285

    Article  CAS  Google Scholar 

  33. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  34. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  35. Yang WH, Schatz GC, Van Duyne RP (1995) Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys 103:869–875

    Article  CAS  Google Scholar 

  36. Gray SK, Kupta T (2003) Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders. Phys Rev B 68:045415

    Article  Google Scholar 

  37. Lee SH, Bantz KC, Lindquist NC, Oh SH, Haynes CL (2009) Self-assembled plasmonic nanohole arrays. Langmuir 25:13685–13693

    Article  CAS  Google Scholar 

  38. Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8:1923–1928

    Article  CAS  Google Scholar 

  39. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018

    Article  CAS  Google Scholar 

  40. Yu Q, Braswell S, Christin B, Xu J, Wallace PM, Gong H, Kaminsky D (2010) Surface-enhanced Raman on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 21:35530

    Google Scholar 

  41. Cintra S, Abdelsalam ME, Bartlett PN, Baumberg JJ, Kelf TA (2006) Sculpted substrates for SERS. Faraday Discuss 132:191–199

    Article  CAS  Google Scholar 

  42. Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Abdelsalam ME, Bartlett PN, Russell AE (2005) Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett 5:2262–2267

    Article  CAS  Google Scholar 

  43. Lang X, Qiu T, Yin Y, Kong F, Si L, Hao Q, Chu PK (2012) Silver nanovoid arrays for surface-enhanced Raman scattering. Langmuir 28:8799–8803

    Article  CAS  Google Scholar 

  44. Ye J, Wen F, Sobhani H, Lassiter JB, Dorpe PV, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12:1660–1667

    Article  CAS  Google Scholar 

  45. Wu H-Y, Choi CJ, Cunningham BT (2012) Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array. Small 8:2878–2885

    Article  CAS  Google Scholar 

  46. Choi CJ, Xu Z, Wu H-Y, Liu GL, Cunningham BT (2010) Surface-enhanced Raman nanodomes. Nanotechnology 21:415301

    Article  Google Scholar 

  47. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8:3183–3190

    Article  CAS  Google Scholar 

  48. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1993) Two-dimensional crystallisation. Nature 361:26

    Article  Google Scholar 

  49. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No:114Z414), Gaziantep University, and Bingöl University. H.C. also acknowledges partial support from the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kahraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, M., Ozbay, A., Yuksel, H. et al. Tunable Plasmonic Silver Nanodomes for Surface-Enhanced Raman Scattering. Plasmonics 13, 785–795 (2018). https://doi.org/10.1007/s11468-017-0573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0573-6

Keywords

Navigation