Skip to main content
Log in

Plasmonic Control of Refractive Index Without Absorption in Metallic Photonic Crystals Doped with Quantum Dots

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the refractive index without absorption in metallic photonic crystals doped with quantum dots. It is found that the absorption and dispersion of probe field can be easily controlled via adjusting properly the corresponding parameters of the system. The effect of the dipole-dipole interaction has also been included in the formulation, which leads to interesting phenomena. Our scheme opens the possibility to control the refractive index without absorption in polaritonic materials doped with nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaso A, John S (2007) Nonlinear Bloch waves in metallic photonic band-gap filaments. Phys Rev A 76:053838

    Article  Google Scholar 

  2. Singh MR (2009) A study of plasmonics in metallic photonic quantum wires. J Appl Phys 106:063106

    Article  Google Scholar 

  3. Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104

    Article  Google Scholar 

  4. Hatef A, Singh M (2010) The study of quantum interference in metallic photonic crystals doped with four-level quantum dots. Nanoscale Res Lett 5:464

    Article  CAS  Google Scholar 

  5. Zhu SY, Scully MO (1996) Spectral line elimination and spontaneous emission cancellation via quantum interference. Phys Rev Lett 76:388

    Article  CAS  Google Scholar 

  6. Zhu SY, Chen H, Huang H (1997) Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure. Phys Rev Lett 79:205

    Article  CAS  Google Scholar 

  7. Zhou P, Swain S (1997) Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion. Phys Rev Lett 78:832

    Article  CAS  Google Scholar 

  8. John S, Quang T (1997) Collective switching and inversion without fluctuation of two-level atoms in confined photonic systems. Phys Rev Lett 78:1888

    Article  CAS  Google Scholar 

  9. Paspalakis E, Kylstra NJ, Knight PL (1999) Transparency induced via decay interference. Phys Rev Lett 82:2079

    Article  CAS  Google Scholar 

  10. Anton MA, Calderon OG, Carreno F (2005) Spontaneously generated coherence effects in a laser-driven four-level atomic system. Phys Rev A 72:023809

    Article  Google Scholar 

  11. Paspalakis E, Knight PL (1998) Phase control of spontaneous emission. Phys Rev Lett 81:293

    Article  CAS  Google Scholar 

  12. John S, Quang T (1994) Spontaneous emission near the edge of a photonic band gap. Phys Rev A 50:1764

    Article  CAS  Google Scholar 

  13. Paspalakis E, Kylstra NJ, Knight PL (1999) Transparency near a photonic band edge. Phys Rev A 60:R33

    Article  CAS  Google Scholar 

  14. John S, Busch K (1999) Photonic bandgap formation and tunability in certain self-organizing systems. J Lightwave Technol 17:1931

    Article  CAS  Google Scholar 

  15. Lodahl P, Van Driel AF, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL (2004) Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430:654

    Article  CAS  Google Scholar 

  16. Gerardot BD, Brunner D, Dalgarno PA, Karrai K, Badolato A, Petroff PM, Warburton RJ (2009) Dressed excitonic states and quantum interference in a three-level quantum dot ladder system. New J Phys 11:013028

    Article  Google Scholar 

  17. Hatef A, Singh M (2010) Plasmonic effect on quantum coherence and interference in metallic photonic crystals doped with quantum dots. Phys Rev A 81:063816

    Article  Google Scholar 

  18. Scully MO (1991) Enhancement of the index of refraction via quantum coherence. Phys Rev Lett 67:1855

    Article  CAS  Google Scholar 

  19. Fleischhauer M, Keitel CH, Scully MO, Su C, Ulrich BT, Zhu SY (1992) Resonantly enhanced refractive index without absorption via atomic coherence. Phys Rev A 46:1468

    Article  CAS  Google Scholar 

  20. Zibrov AS, Lukin MD, Hollberg L, Nikonov DE, Scully MO, Robinson HG, Velichansky VL (1996) Experimental demonstration of enhanced index of refraction via quantum coherence in Rb. Phys Rev Lett 76:3935

    Article  CAS  Google Scholar 

  21. Yavuz DD (2005) Refractive index enhancement in a far-off resonant atomic system. Phys Rev Lett 95:223601

    Article  CAS  Google Scholar 

  22. Proite NA, Unks BE, Green JT, Yavuz DD (2008) Refractive index enhancement with vanishing absorption in an atomic vapor. Phys Rev Lett 101:147401

    Article  CAS  Google Scholar 

  23. Brown ER, McMahon OB (1995) Large electromagnetic stop bands in metallodielectric photonic crystals. Appl Phys Lett 67:2138

    Article  CAS  Google Scholar 

  24. Scalora M, Bloemer MJ, Pethel AS, Dowling JP, Bowden CM, Manka AS (1998) Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures. J Appl Phys 83 :2377

    Article  CAS  Google Scholar 

  25. Velikov KP, Vos WL, Moroz A, Van Blaaderen A (2004) Reflectivity of metallodielectric photonic glasses. Phys Rev B 69:075108

    Article  Google Scholar 

  26. Veronis G, Dutton RW, Fan S (2005) Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range. J Appl Phys 97:1

    Article  Google Scholar 

  27. Haque I, Singh MR (2007) A study of the ac Stark effect in doped photonic crystals. J Phys Condens Matter 19:156229

    Article  Google Scholar 

  28. Singh MR (2009) Absorption studies in dipole–dipole interacting nanoparticles doped in nonlinear photonic crystals. J Mod Opt 56:758

    Article  CAS  Google Scholar 

  29. Rupasov VI, Singh M (1997) Two-atom problem and polariton-impurity band in dispersive media and photonic-band-gap materials. Phys Rev A 56:898

    Article  CAS  Google Scholar 

  30. Singh MR (2009) Photon transparency in metallic photonic crystals doped with an ensemble of nanoparticles. Phys Rev A 79:013826

    Article  Google Scholar 

  31. Singh MR (2007) Dipole-dipole interaction in photonic-band-gap materials doped with nanoparticles. Phys Rev A 75:043809

    Article  Google Scholar 

  32. Paspalakis E, Gong SQ, Knight PL (1998) Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom. Opt Commun 152:293

    Article  CAS  Google Scholar 

  33. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Keskinen MJ, Loschialpo P, Forester D, Schelleng J (2000) Photonic band gap structure and transmissivity of frequency-dependent metallic–dielectric systems. J Appl Phys 88:5785

    Article  CAS  Google Scholar 

  35. Xu X, Xi Y, Han D, Liu X, Zi J, Zhu Z (2005) Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals. Appl Phys Lett 86:091112

    Article  Google Scholar 

  36. Wang Z, Chan CT, Zhang W, Ming N, Sheng P (2001) Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency. Phys Rev B 64:113108

    Article  Google Scholar 

  37. Kamaev V, Liu C, Pokrovsky AL, Li CY, Efros AL, Valy Vardeny Z (2005) Optical studies of 2 D and 3 D metallo-dielectric photonic crystals. Proc SPIE Int Soc Opt Eng 5927:592712

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674002 and 11205001) and the doctoral scientific research foundation of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, B. Plasmonic Control of Refractive Index Without Absorption in Metallic Photonic Crystals Doped with Quantum Dots. Plasmonics 13, 567–574 (2018). https://doi.org/10.1007/s11468-017-0545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0545-x

Keywords

Navigation