Skip to main content
Log in

Optical Absorption Transitions in Mn Star-like Helical Sculptured Thin Films

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we have shown that by engineering of the morphology of a manganese thin film as a star-like helical sculptured thin film (pine tree shaped) (SHSTF), three broad band absorption transitions from dielectric to metal can be obtained. The structural and morphological changes of the produced samples in three- and five-pointed SHSTFs are obtained by means of field emission scanning electron microscope (FESEM) and atomic force microscope (AFM) analyses. The experimental optical absorption results are compared with the predictions of our proposed model based on linearly polarized light propagation by a transfer matrix method, and good qualitative results are obtained. This study can be a base for the characterization of optical and plasmonic properties of devices with broad band absorption and trapping of light in photocells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: Growthmechanics and applications. J. Vac. Sci. Technol. A 15:1460

    Article  CAS  Google Scholar 

  2. Robbie K, Friedrich LJ, Dew SK, Smy T, Brett MJ (1995) Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol A13:1032

    Article  Google Scholar 

  3. Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol B16:1115

    Article  Google Scholar 

  4. Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C (2004) Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev. Sci. Instrum 75:1089

    Article  CAS  Google Scholar 

  5. Ertekin E, Lakhtakia A (1999) Sculptured thin film Šolc filters for optical sensing of gas. Eur. Phys. J. Appl. Phys 5:45

    Article  CAS  Google Scholar 

  6. Liu YJ, Shi J, Zhang F, Liang H, Xu J, Lakhtakia A, Fonash SJ, Huang TJ (2011) High-speed optical humidity sensors based on chiral sculptured thin films. Sensor. Actuat.B-Chem 156:593

    Article  CAS  Google Scholar 

  7. Wu Q, Hodgkinson IJ, Lakhtakia A (2000) Circular polarization filters made of chiral sculptured thin films: experimental and simulation results. Opt. Eng 39:1863

    Article  Google Scholar 

  8. A. Lakhtakia, R. Messier, Sculptured thin films, Nanoengineered Morphology and Optics, SPIE, USA ,2005.

  9. A. Lakhtakia, M. C. Demirel, M. W. Horn, J. Xu, Advances in Solid State Physics (2008) edits by R. Huag, Springer Berlin Heidelberg. p. 295,

  10. Wang F, Lakhtakia A, Messier R (2003) On piezoelectric control of the optical response of sculptured thin films. J. Mod. Optics 50

  11. Kennedy SR, Brett MJ, Toader O, John S (2002) Fabrication of tetragonal square spiral photonic crystals. Nano Letters 2:59

    Article  CAS  Google Scholar 

  12. Jensen MO, Brett MJ (2005) Square spiral 3D photonic bandgap crystals at telecommunications frequencies. Optics Express 13:3348

    Article  Google Scholar 

  13. Abdulhalim I, Karabchevsky A, Patzig C, Rauschenbach B, Fuhrmann B, Eltzov E, Marks R, Xu J, Zhang F, Lakhtakia A (2009) Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water. Appl. Phys. Lett 94:063106

    Article  Google Scholar 

  14. Lakhtakia A, Jen Y-J, Lin C-F (2009) Multiple trains of same-color surface plasmonpolaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence. J. Nanophoton 3:033506

    Article  Google Scholar 

  15. Abdulhalim I (2014) Plasmonic Sensing Using Metallic NanoıSculptured Thin Films. Small 10:3499

    Article  CAS  Google Scholar 

  16. van Popta AC, Brett MJ, Sit JC (2005) Double-handed circular Bragg phenomena in polygonal helix thin films. J. App. Phys 98:083517

    Article  Google Scholar 

  17. Hodgkinson IJ, Lakhtakia A, Wu QH, Silva LD, McCall MW (2004) Ambichiral, equichiral and finely chiral layered structures. Opt Commun 239:353

    Article  CAS  Google Scholar 

  18. Babaei F (2013) On optical rotation and selective transmission in ambichiral sculptured thin films. J. Mod. Optics 60:1370

    Article  CAS  Google Scholar 

  19. Babaei F (2013) On circular Bragg regimes in ellipsometry spectra of ambichiral sculptured thin films. J. Mod. Optics 60:886

    Article  CAS  Google Scholar 

  20. Lakhtakia A (2000) On percolation and circular Bragg phenomenon in metallic, helicoidally periodic, sculptured thin films. Microw Opt. Technol. Lett 24:239

    Article  Google Scholar 

  21. Babaei F, Savaloni H (2007) On the dependence of circular Bragg phenomenon of noble metals helicoidally periodic sculptured thin films on visible and IR wavelengths. Opt. Commun 278:221

    Article  CAS  Google Scholar 

  22. Babaei F, Savaloni H (2007) Reflection, transmission and circular dichroism in axially excited slab of a copper thin film helicoidal bianisotropic medium. Opt. Commun 278:321

    Article  CAS  Google Scholar 

  23. Angadi MA (1985) Some transport properties of transition metal films. J. Mater. Sci. 20:761

    Article  CAS  Google Scholar 

  24. Angadi MA, Shivaprasad SM, Ashrit PV (1980) Electrical properties of vacuum evaporated thin manganese films. Phys. Status Solidi 60:159

    Article  Google Scholar 

  25. Angadi MA, Shivaprasad SM, Udachan LA (1980) Temperature coefficient of resistance of thin manganese films. Thin Solid Films 71:1

    Article  Google Scholar 

  26. Angadi MA, Shivaprasad SM (1980) The effect of deposition rate on the electrical resistivity of thin manganese film. J. Phys. D; Appl. Phys. 13:L157

    Article  Google Scholar 

  27. Sabine GE (1939) Reflectivities of evaporated metal films in the near and far ultraviolet. Phys. Rev. 55:1064

    Article  CAS  Google Scholar 

  28. Bueche F (1948) The Optical Properties of Ni, Co, Fe, Mn, and Cd. J. Opt. Soc. Am. 38:806

    Article  CAS  Google Scholar 

  29. Atkinson R (1976) Optical, magneto-optical and structural properties of Mn, Bi and MnBi in the form of thin films. Thin Solid Films 37:195

    Article  CAS  Google Scholar 

  30. Fouad SS, Ammar AH (1995) The optical properties of manganese thin films. physica B 205:285

    Article  CAS  Google Scholar 

  31. Siabi-Garjan A, Savaloni H, Beik-Mohammadi J, Grayeli-Korpi A-R (2013) On the characterization of sculptured columnar Mn thin films; correlation between nanostructure and the optical and electrical properties using experimental and simulation results. Philosophical Magazine 93:3527

    Article  CAS  Google Scholar 

  32. Siabi A, Savaloni H (2015) Extinction Spectra and Electric Near-Field Distribution of Mn Nano- Rod Based Sculptured Thin Films: Experimental and Discrete Dipole Approximation Results. Plasmonic 10:861

    Article  Google Scholar 

  33. Tait RN, Smy T, Brett MJ (1993) Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226:196

    Article  CAS  Google Scholar 

  34. L. Eckertova 1986), Physics of thin films, Second edition, Chapter 1, Table 1, (Plenum Press, Berlin: Springer.

  35. Messier R, Venugopal VC, Suna PD (2000) Origin and evolution of sculptured thin films. J. Vac. Sci.Technol A18:1538

    Article  Google Scholar 

  36. Zhao Y-P, Ye D-X, Wang G-C, Lu T-M (2002) Novel nano-column and nano-flower arrays by glancing angle deposition. Nano. Lett 4:351

    Article  Google Scholar 

  37. Horn MV, Pickett MD, Messier R, Lakhtakia A (2004) Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures. Nanotechnology 15:303

    Article  CAS  Google Scholar 

  38. Movchan BA, Demchishin AV (1969) Structure and properties of thick condensates of Nickel, Titanium, Tungsten, Aluminum oxides, and Zirconium dioxides in Vacuum. Fiz. Metal. Metalloved 28:83

    Google Scholar 

  39. Thornton JA (1977) High rate thick film growth. Annu. Rev. Mat. Sci 7:239

    Article  CAS  Google Scholar 

  40. Kennedy SR, Brett MJ (2004) Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition. J. Vac. Sci. B 22:1184

    Article  CAS  Google Scholar 

  41. Babaei F, Savaloni H (2008) Numerical study of the remittances of axially excited chiral sculptured zirconia thin films. J. Mod. Opt 55:1845

    Article  CAS  Google Scholar 

  42. Sherwin JA, Lakhtakia A, Hodgkinson IJ On calibration of a nominal structure– property relationship model for chiral sculptured thin films by axial transmittance measurements. Optics Commun 209:369

  43. E. D. Palik, 1985 Handbook of Optical Constants of Solids, Academic press: New York.

  44. F. Babaei, Effects of dispersion and dissipation on the optical rotation and ellipticity of chiral sculptured thin films, J. Mod. Optics 58 (2011) 1292.

  45. Savaloni H, Babaei F, Song S, Placido F (2009) Characteristics of sculptured Cu thin films and their optical properties as a function of deposition rate. Appl. Sur. Sci 255:8041

    Article  CAS  Google Scholar 

  46. Savaloni H, Babaei F, Song S, Placido F (2011) Influence of substrate rotation speed on the nanostructure of sculptured Cu thin films. Vacuum 85:776

    Article  CAS  Google Scholar 

  47. Bennett HE (1961) Relation Between Surface Roughness and Specular Reflectance at Normal Incidence. J. O. Porteus, JSOA 51:123

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the University of Tehran and University of Qom. HS acknowledges the University of Tehran and is grateful to the Iran National Science Foundation (INSF) and the Centre of Excellence for Physics of Structure and Microscopic Properties of Matter, Department of Physics, University of Tehran, for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferydon Babaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, F., Savaloni, H. Optical Absorption Transitions in Mn Star-like Helical Sculptured Thin Films. Plasmonics 13, 203–214 (2018). https://doi.org/10.1007/s11468-017-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0500-x

Keywords

Navigation