Skip to main content
Log in

Highly Efficient Ultrathin Plasmonic Insulator-Metal-Insulator-Metal Solar Cell

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nano-porous ultrathin plasmonic insulator-metal-insulator-metal (IMIM) solar cell with high power conversion efficiency up to 7% in broad wavelength range from 300 to 750 nm was theoretically studied. The proposed IMIM design allows to choose various bottom insulators with desired barrier height of metal-insulator interface due to independence of the total absorbance on the bottom insulator. IMIM structure shows 73.8% difference in the average absorbance between the top and bottom metal layers with 1-nm bottom insulator. Moreover, the incident light decreases the absorbance negligibly up to 35 degrees for both TE and TM modes and by 17.5% at 70 degrees. Furthermore, the absorption between TE and TM modes differs by less than 5%, which indicates the structure as polarization independent. Our results indicate IMIM design benefit in plasmonic solar cells demanding low thickness, flexibility, low-cost, and polarization independence. Moreover, this structure can be implemented for integrated optical circuits as well as for solar thermoelectric generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liang Q, Yu W, Zhao W, Wang T, Zhao J, Zhang H, Tao S (2013) Numerical study of the meta-nanopyramid array as efficient solar energy absorber. Opt. Mater. Express 3(8):1187–1196. doi:10.1364/OME.3.001187

    Article  Google Scholar 

  2. Lobet M, Lard M, Sarrazin M, Deparis O, Henrard L (2014) Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption. Opt. Express 22(10):12678–12690. doi:10.1364/OE.22.012678

    Article  CAS  Google Scholar 

  3. Hedayati M, Faupel F, Elbahri M (2012) Tunable broadband plasmonic perfect absorber at visible frequency. Appl. Phys. A 109(4):769–773. doi:10.1007/s00339-012-7344-1

    Article  CAS  Google Scholar 

  4. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2(517):1–7. doi:10.1038/ncomms1528

    Google Scholar 

  5. Park H, Lee S-Y, Kim J, Lee B, Kim H (2015) Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. Opt. Express 23(19):24464–24474. doi:10.1364/OE.23.024464

    Article  CAS  Google Scholar 

  6. Luo S, Li B, Xiong D, Zuo D, Wang X (2016) A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics. doi:10.1007/s11468-016-0253-y

    Google Scholar 

  7. Chen Y, Dai J, Yan M, Qiu M (2014) Metal-insulator-metal plasmonic absorbers: influence of lattice. Opt. Express 22(25):30807–30814. doi:10.1364/OE.22.030807

    Article  CAS  Google Scholar 

  8. Feng P, Li W-D, Zhang W (2015) Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber. Opt. Express 23(3):2328–2338. doi:10.1364/OE.23.002328

    Article  CAS  Google Scholar 

  9. Yan Z, Du W, Tu L, Gu P, Huang Z, Zhan P, Liu F, Wang Z (2015) A facile high performance SERS substrate based on broadband nearperfect optical absorption. J. Raman Spectrosc. 46(9):795–801. doi:10.1002/jrs.4721

    Article  CAS  Google Scholar 

  10. Mann SA, Garnett EC (2015) Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells. ACS Photonics 2(7):816–821. doi:10.1021/acsphotonics.5b00260

    Article  CAS  Google Scholar 

  11. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25):251104. doi:10.1063/1.3442904

    Article  Google Scholar 

  12. Lei J, Ji B, Li J (2016) High-performance tunable plasmonic absorber based on the metal-insulator-metal grating nanostructure. Plasmonics. doi:10.1007/s11468-016-0242-1

    Google Scholar 

  13. Gundlach K (1973) Theory of metal-insulator-metal tunneling for a simple two-band model. J. Appl. Phys. 44(11):5005–5010. doi:10.1063/1.1662078

    Article  CAS  Google Scholar 

  14. Mubeen S, Lee J, Lee W-R, Singh N, Stucky GD, Moskovits M (2014) On the plasmonic photovoltaic. ACS Nano 8(6):6066–6073. doi:10.1021/nn501379r

    Article  CAS  Google Scholar 

  15. Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14(3):1374–1380. doi:10.1021/nl4044373

    Article  CAS  Google Scholar 

  16. Wang F, Melosh NA (2013) Power-independent wave-length determination by hot carrier collection in metal-insulator-metal devices. Nat. Commun. 4:1711. doi:10.1038/ncomms2728

    Article  Google Scholar 

  17. Gong T, Munday JN (2014) Angle-independent hot carrier generation and collection using transparent conducting oxides. Nano Lett. 15(1):147–152. doi:10.1021/nl503246h

    Article  Google Scholar 

  18. Wang F, Melosh NA (2011) Plasmonic energy collection through hot carrier extraction. Nano Lett. 11(12):5426–5430. doi:10.1021/nl203196z

    Article  CAS  Google Scholar 

  19. Hubarevich A, Kukhta A, Demir HV, Sun X, Wang H (2015) Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Opt. Express 23(8):9753–9761. doi:10.1364/OE.23.009753

    Article  CAS  Google Scholar 

  20. Lumerical FDTD Software. Available from: https://www.lumerical.com/tcad-products/fdtd/. Accessed 3 Dec 2016

  21. Pepper SV (1970) Optical analysis of photoemission. JOSA 60(6):805–812. doi:10.1364/JOSA.60.000805

    Article  CAS  Google Scholar 

  22. Kanter H (1970) Slow-electron mean free paths in aluminum, silver, and gold. Phys. Rev. B 1(2):522–537. doi:10.1103/Phys Rev B.1.522

    Article  Google Scholar 

  23. Ding ZJ, Shimizu R (1996) A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning 18(2):92–113. doi:10.1002/sca.1996.4950180204

    Article  CAS  Google Scholar 

  24. Ashley J (1990) Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter. J. Electron. Spectrosc. Relat. Phenom. 50(2):323–334. doi:10.1016/0368-2048(90)87075-Y

    Article  CAS  Google Scholar 

  25. Robertson J, Chen C (1999) Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate. Appl. Phys. Lett. 74(8):1168–1170. doi:10.1063/1.123476

    Article  CAS  Google Scholar 

  26. Kovacs D, Winter J, Meyer S, Wucher A, Diesing D (2007) Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B 76(23):235408. doi:10.1103/PhysRevB.76.235408

    Article  Google Scholar 

  27. Gogoi N, Sahu PP (2015) All-optical compact surface plasmonic two-mode interference device for optical logic gate operation. Appl. Opt. 54(5):1051–1057. doi:10.1364/AO.54.001051

    Article  CAS  Google Scholar 

  28. Gogoi N, Sahu PP (2016) All-optical surface plasmonic universal logic gate devices. Plasmonics 11:1537. doi:10.1007/s11468-016-0207-4

    Article  CAS  Google Scholar 

  29. Sahu PP (2016) Theoretical investigation of all optical switch based on compact surface plasmonic two mode interference coupler. IEEE J. Lightwave Technol. 34(4):1300–1305. doi:10.1109/JLT.2015.2501317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A financial support was received from the National Research Foundation of Singapore (NRF7-CRP6-2010-2 and NRF-CRP12-2013-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubarevich, A., Marus, M., Fan, W. et al. Highly Efficient Ultrathin Plasmonic Insulator-Metal-Insulator-Metal Solar Cell. Plasmonics 13, 141–145 (2018). https://doi.org/10.1007/s11468-016-0493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0493-x

Keywords

Navigation