Skip to main content
Log in

High-Efficiency All-Dielectric Metasurfaces for Broadband Polarization Conversion

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have presented two polarization convertors based on amorphous silicon metasurfaces. Results show that the cross-polarized transmission of the first polarization convertor is over 90% with over 95% polarization conversion efficiency across the 300-nm bandwidth and maintains high-efficiency performance with big incident angles in this bandwidth. To steer cross-polarized light with an angle according to the generalized Snell’s law, we have created another polarization convertor by choosing several resonators with different geometries in one supercell, achieving full 2π phase control, guiding the co-polarized and cross-polarized transmitted light spatially separated efficiently with broadband operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu W, Chen S, Li Z et al (2015) Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt Lett 40(13):3185–3188

    Article  Google Scholar 

  2. Tang F, Wang Y, Qiu L, Zhao W, Sun Y (2014) Super-resolution radially polarized-light pupil-filtering confocal sensing technology. Appl Opt 53(31):7407–7414

    Article  Google Scholar 

  3. Brydegaard M, Guan Z, Wellenreuther M, Svanberg S (2009) Insect monitoring with fluorescence lidar techniques: feasibility study. Appl Opt 48(30):5668–5677

    Article  Google Scholar 

  4. Lima IT, Lima AO, Sun Y, Jiao H, Zweck J, Menyuk CR (2005) A receiver model for optical fiber communication systems with arbitrarily polarized noise. J Lightwave Technol 23(3):1478–1490

    Article  Google Scholar 

  5. Steen WM (2000) Principles of optics M.born and E.wolf, 7th (expanded) edition. Opt Laser Technol 32(5):385

    Article  Google Scholar 

  6. Kim SW, Yee KJ, Abashin M, Pang L, Fainman Y (2015) Composite dielectric metasurfaces for phase control of vector field. Opt Lett 40(11):2453–2456

    Article  Google Scholar 

  7. West PR, Stewart JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F (2014) All-dielectric subwavelength metasurface focusing lens. Opt Express 22(21):26212–26221

    Article  Google Scholar 

  8. Bohn BJ, Schnell M, Kats MA, Aieta F, Hillenbrand R, Capasso F (2015) Near-field imaging of phased array metasurfaces. Nano Lett 15(6)

  9. Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y (2014) Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt Express 22(14):17207–17215

    Article  Google Scholar 

  10. Cheng J, Ansari-Oghol-Beig D, Mosallaei H (2014) Wave manipulation with designer dielectric metasurfaces. Opt Lett 39(21):6285–6288

    Article  Google Scholar 

  11. Khorasaninejad M, Aieta F, Kanhaiya P, Kats MA, Genevet P, Rousso D (2015) Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 15(8)

  12. Cheng BH, Lan YC, Tsai DP (2013) Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt Express 21(12):14898–14906

    Article  Google Scholar 

  13. Zhu Y, Yuan W, Yu Y, Wang P (2016) Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits. Plasmonics 11:1543–1548

  14. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A (2015) Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat Commun 6(5)

  15. Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C (2015) Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci Rep 5

  16. Liu Z, Chen S, Cheng H, Li Z, Liu W, Tian J (2015) Interferometric control of signal light intensity by anomalous refraction with plasmonic metasurface. Plasmonics 11(2):1–6

    Google Scholar 

  17. Arbabi A, Horie Y, Bagheri M, Faraon A (2015) Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10(11):937–943

    Article  CAS  Google Scholar 

  18. Zhang Y, Zhou L, Li J, Wang Q, Huang C (2015) Ultra-broadband and strongly enhanced diffraction with metasurfaces. Sci Rep 5

  19. Sun S, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY (2012) High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12(12):6223–6229

    Article  CAS  Google Scholar 

  20. Hsu WL, Wu PC, Chen JW, Chen TY, Cheng BH, Chen WT (2015) Vertical split-ring resonator based anomalous beam steering with high extinction ratio. Sci Rep 5

  21. Sun B, Chen MY, Zhou J, Zhang YK (2013) Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire. Plasmonics 8(2):1253–1258

    Article  CAS  Google Scholar 

  22. Xu Y, Xiao J (2016) Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides. Appl Opt 55(3):611–618

    Article  CAS  Google Scholar 

  23. Guan X, Wu H, Shi Y et al (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38(16):3005–3008

    Article  CAS  Google Scholar 

  24. Chen Y, Song G, Xiao J, Yu L, Zhang J (2013) Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons. Opt Express 21(1):314–321

    Article  CAS  Google Scholar 

  25. Wen D, Yue F, Li G, Zheng G, Chan K, Chen S (2015) Helicity multiplexed broadband metasurface holograms. Nat Commun 6

  26. Tanaka Y, Mori Y, Nomura T (2014) Single-shot three-dimensional shape measurement by low-coherent optical path difference digital holography. Appl Opt 53(53):19–24

    Article  Google Scholar 

  27. Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S (2015) Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10(4)

  28. Karimi E, Schulz SA, Leon ID, Qassim H, Upham J, Boyd RW (2014) Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light-Sci Appl 3(5)

  29. Chong KE, Staude I, James A, Dominguez J, Liu S, Campione S (2015) Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett 15(8)

  30. Liang Y, Huang X (2014) Generation of two beams of light carrying spin and orbital angular momenta of opposite handedness. Opt Lett 39(17):5074–5077

    Article  Google Scholar 

  31. Guo Y, Yan L, Pan W, Luo B (2015) Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces. Plasmonics 11(1):1–8

    Google Scholar 

  32. Arbabi A, Faraon A (2014) Fundamental limits of ultrathin metasurfaces. Phys arXiv:1411.2537

  33. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13(2):139–150

    Article  CAS  Google Scholar 

  34. Wu Y, Zhang C, Estakhri NM, Zhao Y, Kim J, Zhang M (2014) Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv Mater 26(35):6106–6110

    Article  CAS  Google Scholar 

  35. Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM (2015) High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 15(9):6261–6266

    Article  CAS  Google Scholar 

  36. Khorasaninejad M, Capasso F (2015) Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett 15(10):6709–6715

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Foundation Council of China under contract no. 61640409 and the research fund from Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, under contract no.DH201506, for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Chen or Jianjin Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Cai, J., Sun, W. et al. High-Efficiency All-Dielectric Metasurfaces for Broadband Polarization Conversion. Plasmonics 13, 21–29 (2018). https://doi.org/10.1007/s11468-016-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0479-8

Keywords

Navigation