Skip to main content
Log in

Experimental and Theoretical Analysis of Connector Offset Optical Fiber Refractive Index Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a high sensitive connector offset optical fiber sensor is employed to detect the refractive index of liquid. The configuration chosen for this experiment is formed by lateral core offset fusion splicing of no-core fiber (NCF) between the single mode fibers (SMF) and cladding modes are excited by misalignment. The sensing principle for refractive index detection is based on Mach-Zehnder Interferometer (MZI) principle and the experiment is carried out by immersion of device in NaCl solutions of different refractive indices. Such refractive index sensor exhibits high sensitivity 197.33 nm/RIU for the surrounding refractive index variation from 1.333 to 1.380, and the result shows the excellent agreement with theoretical analysis. Compared to other sensors, the proposed device has the potential to provide high sensitivity, ease of fabrication, low cost, compact size, and linear response. Thus, it can be used in many applications such as bio-sensors, chemical sensor, temperature sensor, and pressure sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Q, Wei W, Guo M, Zhao Y (2016) Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology. Sens. and Actuator B: Chem. 222:159–165

    Article  CAS  Google Scholar 

  2. Pang F, Liu H, Guo H et al (2011) In fiber Mach-Zehnder interferometer based double cladding fibers for refractive index sensor. IEEE Sensors J 11(10):2395–2400

    Article  Google Scholar 

  3. Bhardwaj V, Singh VK (2016) Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing. Sens and Actuator A: Phy 244:30–40

    Article  CAS  Google Scholar 

  4. Wang Y, Shen C, Lou W, Shentu F (2016) Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with grapheme oxide. Sens and Actuator B: Chem 234:503–509

    Article  CAS  Google Scholar 

  5. Gutierrez J et al (2016) Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometer. Opt Commun 374:39–44

    Article  Google Scholar 

  6. Raji Y, Lin H, Ibrahim S, Mokhtar M, Yusoff Z (2016) Intensity-modulated abrupt tapered fiber Mach-Zehnder interferometer for the simultaneous sensing of temperature and curvature. Opt. & Laser Techn. 86:8–13

    Article  CAS  Google Scholar 

  7. Chong JH, Shum P, Haryono H et al (2004) Measurements of refractive index sensitivity using long-period grating refractometer. Opt Commun 229:65–69

    Article  CAS  Google Scholar 

  8. Liang W, Huang Y, Xu Y et al (2005) Highly sensitive fiber Bragg grating refractive index sensor. Appl Phys Lett 86:151122

    Article  Google Scholar 

  9. Qiu H, Xu S, Jiang S et al (2015) A novel graphene based tapered optical fiber sensor for glucose detection. Appl Surf Sci 329:390–395

    Article  CAS  Google Scholar 

  10. Bevenot X, Trouillet A (2002) Surface plasmon resonance hydrogen sensor using an optical fibre. Meas Sci Technol 13(1):118–124

    Article  CAS  Google Scholar 

  11. Gangwar R, Bhardwaj V, Singh VK (2016) Magnetic field sensor based on selectively liquid fluid infiltrated dual core photonic crystal fiber. Opt Eng 55:026111–026115

    Article  Google Scholar 

  12. Gangwar R, Singh VK (2015) Refractive index sensor based on selectively liquid fluid infiltrated dual core photonic crystal fiber. Photon Nano Str 15:46–52

    Article  Google Scholar 

  13. Lvanov O, Chertoriyskiy (2015) Fiber-optic bend sensor based on double cladding fiber. J Sens. 726793–6

  14. Tian Z, Yam S, Loock H (2008) Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photon Technol Lett 20:1387

    Article  CAS  Google Scholar 

  15. Zhao Y, Li XG, Cai L (2015) High sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber. Sens Actuators A: Phy 223:119–124

    Article  CAS  Google Scholar 

  16. Zhang AP, Shao LY, Ding JF, He S (2005) Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature. IEEE Photon Technol Lett 17(11):2397–2399

    Article  Google Scholar 

  17. Huang R, Ni K, Ma Q, Wu X (2016) Refractormeter based on a tapered Mach–Zehnder interferometer with peanut-shape structure. Opt & Laser in Eng 83:80–82

    Article  Google Scholar 

  18. Singh A, Enles D, Sharma A, Singh M (2014) Temperature sensitivity of long period fiber grating in SMF-28 fiber. Optik 125:457–460

    Article  CAS  Google Scholar 

  19. Wang P et al (2013) Fiber tip high temperature sensor based on multimode interference. Opt Lett 38:4617–4620

    Article  Google Scholar 

  20. Frazao O, Santos JL (2004) Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres. J. Opt. A, pure Appl Opt 6(6):553–556

    Article  CAS  Google Scholar 

  21. Sai V, Kundub T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804–2809

    Article  CAS  Google Scholar 

  22. Kulchin YN, Vitrik OB, Dyshlyuk AV, Zhou Z (2013) Conditions for surface plasmon resonance excitation by whispering gallery modes in a bent single mode optical fiber for the development of novel refractometric sensors. Laser Phys 23(8):085105

    Article  Google Scholar 

  23. Kishor K, Baitha MN, Sinha RK, Lahiri B (2014) Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization. J Opt society of America 31(7):1410–1414

    Article  CAS  Google Scholar 

  24. Dhara P, Singh VK (2015) Effect of MMF stub on the sensitivity of a photonic crystal fiber at 1550 nm. Opt Fiber Techn 21:154–159

    Article  CAS  Google Scholar 

  25. Domingues M et al (2006) Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect. Measurement 77:265–268

    Article  Google Scholar 

  26. Wang Z, Tan Z et al (2016) Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure. Opt Laser Technol 84:59–63

    Article  CAS  Google Scholar 

  27. Wang JN, Tang JL (2012) Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing. Sensors 12(3):2983–2995

    Article  CAS  Google Scholar 

  28. Zhang S, Zhang W, Geng P, Geo S (2013) Fiber Mach-Zehnder interferometer based on concatenated down- and up-tapers for refractive index sensing applications. Opt Commun 288:47–51

    Article  CAS  Google Scholar 

  29. Yin G, Lou S, Zou H (2013) Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section. Opt & Laser Techn 45:294–300

    Article  CAS  Google Scholar 

  30. Bhatia P, Gupta BD (2011) Surface plasmon resonance based fiber optic refractive index sensor: sensitivity enhancement. Appl Opt 50(14):141473

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Indian Institute of Technology (Indian School of Mines), Dhanbad, India for providing financial support, Electrical Engineering Department and Physics Department of IIT MADRAS for providing the experimental research facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanita Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, V., Kishor, K. & Singh, V.K. Experimental and Theoretical Analysis of Connector Offset Optical Fiber Refractive Index Sensor. Plasmonics 12, 1999–2004 (2017). https://doi.org/10.1007/s11468-016-0473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0473-1

Keywords

Navigation