Skip to main content
Log in

Simulation of the Sensing Performance of a Plasmonic Biosensor Based on Birefringent Solid-Core Microstructured Optical Fiber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A finite element method is used to analyze the performance of a microstructured optical fiber-based surface plasmon resonance sensors aimed for biomedical applications, such as the detection of blood carried species. Birefringence obtained by removing of a row of holes in a two-ring hexagonal lattice of holes in a gold covered silica fiber leads to a relatively high sensitivity of the fiber optical response to a refractive index of the analyte surrounding the fiber. This fiber structure supports two types (I and II) of resonant modes. In these modes, there is an opposite variation of some sensing parameters with the increase of the refractive index of the analyte between 1.36 and 1.39. Thus, for a smaller value (1.36) of the refractive index of the analyte n a, the resonance spectral width δλ 0.5 is large for the core mode I and small for the core mode II but for a larger value (1.39) of n a, δλ 0.5 is small for the core mode I and large for the core mode II. Also, for n a = 1.36, the amplitude sensitivity S A is small for the core mode I and large for the core mode II but for n a = 1.39, S A is large for the core mode I and small for the core mode II. By adjusting the radius of the gold layer, the proposed sensor shows high spectral sensitivity S λ and narrow δλ 0.5 at the same resonance wavelength and n a (1.39) where the figure of merit (FOM) is very large in comparison with the most recently published values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skorobogatiy M (2009) Microstructured and photonic bandgap fibers for applications in the resonant bio-and chemical sensors. J Sens 524237:1–20. doi:10.1155/2009/524237

    Article  CAS  Google Scholar 

  2. Popescu VA, Puscas NN, Perrone G (2012) Power absorption efficiency of a new microstructured plasmon optical fiber. J. Opt. Soc. Am. B 29(11):3039–3046. doi:10.1364/JOSAB.29.003039

    Article  CAS  Google Scholar 

  3. Popescu VA, Puscas NN, Perrone G (2014) Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. J Opt Soc Am B 31(5):1062–1070. doi:10.1364/JOSAB.31.001062

    Article  CAS  Google Scholar 

  4. Rifat AA, Mahdiraji GA, Sua YM, Shee YG, Ahmed R, Chow DM, Adikan FRM (2015) Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon Technol Lett 27(15):1628–1631. doi:10.1109/LPT.2015.2432812

    Article  CAS  Google Scholar 

  5. Luan N, Wang R, Lv W, Yao J (2015) Surface plasmon resonance sensor based on Dshaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582. doi:10.1364/OE.23.008576

    Article  CAS  PubMed  Google Scholar 

  6. Peng L, Shi F, Zhou G, Hou Z, Xia C (2015) A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photon J 7(5):1–9. doi:10.1109/JPHOT.2015.2488278

    Article  CAS  Google Scholar 

  7. Shuai B, Xia L, Zhang Y, Liu D (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20(6):5974–5986. doi:10.1364/OE.20.005974

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Xia L, Zhou C, Yu X, Liu H, Liu D, Zhang Y (2011) Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range. Opt Commun 284(18):4161–4166. doi:10.1016/j.optcom.2011.04.053

    Article  CAS  Google Scholar 

  9. Sharma AK, Rajan R, Gupta BD (2007) Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Opt Commun 274(2):320–326

    Article  CAS  Google Scholar 

  10. Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281:1486–1491

    Article  CAS  Google Scholar 

  11. Ghatak AK, Thyagarajan K (1999) Introduction to fiber optics. Cambridge University Press, Cambridge

  12. Vial A, Grimault AS, Macías D, Barchiesi D, Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416. doi:10.1103/PhysRevB.71.085416

    Article  CAS  Google Scholar 

  13. Shalabney A, Abdulhalim I (2012) Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. Opt Lett 37(7):1175–1177. doi:10.1364/OL.37.001175

    Article  CAS  PubMed  Google Scholar 

  14. Sardar D, Levy L (1998) Optical properties of whole blood. Lasers Med Sci 13(2):106–111. doi:10.1007/s101030050062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, V.A., Puscas, N.N. & Perrone, G. Simulation of the Sensing Performance of a Plasmonic Biosensor Based on Birefringent Solid-Core Microstructured Optical Fiber. Plasmonics 12, 905–911 (2017). https://doi.org/10.1007/s11468-016-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0342-y

Keywords

Navigation