Skip to main content
Log in

Tunable Plasmonically Induced Transparency with Asymmetric Multi-rectangle Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonically induced transparency (PIT) effect in a metal–insulator–metal waveguide coupled to asymmetric multi-rectangle resonators is investigated numerically. By adjusting parameters of resonators, we cannot only realize single, double, or treble PIT peaks in the compact structure, but also induce an off-to-on PIT optical response. Numerical simulation by finite element method was conducted to verify our designs. This proposed structure, hence has potential applications for ultra-compact optoelectronic devices at communication band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  3. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  4. Neutens P, Van Dorpe P, De Vlaminck I, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguids. Nat photonics 3:283–286

    Article  CAS  Google Scholar 

  5. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat photonics 4:83–91

    Article  CAS  Google Scholar 

  6. Lee T, Lee D, Kwon S (2015) Dual-function metal-insulator-metal plasmonic optical filter. IEEE Photon J 7:2387254

    Google Scholar 

  7. Wang T, Wen X, Yin C, Wang H (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101

    Article  CAS  Google Scholar 

  8. Zand I, Bahramipanah M, Abrishamian MS, Liu JM (2012) Metal-insulator-metal nanoscale loop-stub structures. IEEE Photon J 4:2136–2142

    Article  Google Scholar 

  9. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18:17922–17927

    Article  CAS  Google Scholar 

  10. Lu H, Liu X, Gong Y, Wang L, Mao D (2011) Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Opt Commun 284:2613–2616

    Article  CAS  Google Scholar 

  11. Chen J, Li Y, Chen Z, Peng J, Qian J, Xu J, Sun Q (2014) Tunable resonances in the plasmonic split-ring resonator. IEEE Photon J 6:1–6

    Google Scholar 

  12. Tao J, Wang Q, Huang X (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  13. Lu H, Liu X, Gong Y, Mao D, Wang G (2011) Analysis of nanoplasmonic wavelength demultiplexing based on metal–insulator–metal waveguides. J Opt Soc Am B 28:1616–1621

    Article  CAS  Google Scholar 

  14. Lu F, Wang Z, Li K, Xu A (2013) A plasmonic triple-wavelength demultiplexing structure based on MIM waveguide with side-coupled nanodisk cavities. IEEE Trans Nanotechnol 12:1185–1189

    Article  CAS  Google Scholar 

  15. Liu H, Gao Y, Zhu B, Ren G, Jian S (2015) A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt Commun 334:164–169

    Article  CAS  Google Scholar 

  16. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19:3513–3518

    Article  CAS  Google Scholar 

  17. Noual A, Akjouj A, Pennec Y, Gillet J, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11:103020

    Article  Google Scholar 

  18. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669–7677

    Article  CAS  Google Scholar 

  19. Dolatabady A, Granpayeh N, Nezhad VF (2013) A nanoscale refractive index sensor in two dimensional plasmonicwaveguide with nanodisk resonator. Opt Commun 300:265–268

    Article  CAS  Google Scholar 

  20. Chen J, Li Z, Deng Z, Xiao J, Gong Q (2013) Coupled-resonator -induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8:1627–1632

    Article  CAS  Google Scholar 

  21. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782

    Article  Google Scholar 

  22. Mu J, Huang W (2009) A low-loss surface plasmonic Bragg grating. J Lightwave Technol 27:436–439

    Article  Google Scholar 

  23. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface Plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104:231114

    Article  Google Scholar 

  24. Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409:490–493

    Article  CAS  Google Scholar 

  25. Phillips DF, Fleischhauer A, Mair A, Walsworth RL, Lukin MD (2001) Storage of light in atomic vapor. Phys Rev Lett 86:783–786

    Article  CAS  Google Scholar 

  26. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  27. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  Google Scholar 

  28. He Z, Li H, Zhan S, Cao G, Li BX (2014) Combined theoretical analysis for plasmon-induced transparency in waveguide systems. Opt Lett 39:5543–5546

    Article  Google Scholar 

  29. Chen J, Wang C, Zhang R, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37:5133–5135

    Article  Google Scholar 

  30. Liu Z, Li H, Zhan S, Cao G, Xu H, Yang H, Xu X (2013) PIT-like effect in asymmetric and symmetric C-shaped metamaterials. Opt Mater 35:948–953

    Article  CAS  Google Scholar 

  31. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 104:047401

    Article  Google Scholar 

  32. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  33. Yang X, Hu X, Chai Z, Lu C, Yang H, Gong Q (2014) Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies. Appl Phys Lett 104:221114

    Article  Google Scholar 

  34. Han Z, Bozhevolnyi S (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19:3251–3257

    Article  CAS  Google Scholar 

  35. Zhu Y, Hu X, Yang H, Gong Q (2014) On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci Rep 4:3752

    Google Scholar 

  36. Cao G, Li H, Zhan S, He Z, Guo Z, Xu X, Yang H (2014) Uniform theoretical description of Plasmon-induced transparency in plasmonic stub waveguide. Opt Lett 39:216–219

    Article  Google Scholar 

  37. Xia X, Wang J, Zhang F, Hu ZD, Liu C, Yan X, Yuan L (2015) Multi-mode plasmonically induced transparency in dual coupled grapheme-integrated ring resonators. Plasmonics 10:1409–1415

    Article  CAS  Google Scholar 

  38. Tang B, Wang J, Xia X, Liang X, Song C, Qu S (2015) Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Appl Phys Express 8:032202

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant No. 11504139, 51172194, 11447149, 11547145), the Natural Science Foundation of Jiangsu Province (Grant No.BK20140167), and the Nature Science Foundation of Xuzhou Institute of Technology (Grand No. XKY2014206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Sun, Y., Fan, Q. et al. Tunable Plasmonically Induced Transparency with Asymmetric Multi-rectangle Resonators. Plasmonics 11, 1621–1628 (2016). https://doi.org/10.1007/s11468-016-0218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0218-1

Keywords

Navigation