Skip to main content
Log in

Comparative Theoretical Study of the Optical Properties of Silicon/Gold, Silica/Gold Core/Shell and Gold Spherical Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The scattering and absorption efficiencies of light by individual silicon/gold core/shell spherical nanoparticles in air are analysed theoretically in the framework of Lorenz-Mie formalism. We have addressed the influence of particle-diameter and gold-shell thickness on the scattering and absorption efficiencies of such nano-heterostructures. For comparison, we also considered the famous silica/gold core/shell nanoparticle and pure gold nanoparticle. Our simulation clearly shows that the optical response of the illuminated Si/Au core/shell nanoparticle differs markedly from that of the famous SiO2/Au heterostructure which in turn does not show a significant difference with that of the pure gold nanoparticle. This difference is clearly evident for shell thickness to outer particle radius ratio of less than 0.5. It manifests itself essentially by the occurrence of a strong and sharp absorption resonance beyond the wavelength of 600 nm where the silica/gold and the pure gold nanoparticles never absorb. The characteristics of this resonance are found to be sensitive to the particle diameter and the shell thickness. In particular, its spectral position can be adjusted over a wide spectral range from the visible to the mid-IR by varying the particle diameter and/or the shell thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A Hadrons Nucl 216:398–410

    CAS  Google Scholar 

  2. Fan X, Zheng W, Singh DJ (2014) Light scattering and surface plasmons on small spherical particles. Light: Science & Applications 3, e179

    Article  CAS  Google Scholar 

  3. Ando J, Yano T, Fujita K, Kawata S (2013) Metal nanoparticles for nano-imaging and nano-analysis. Phys Chem Chem Phys 15:1713–13722

    Article  Google Scholar 

  4. Peng Y, Xiong B, Peng L, Li H, He Y, Yeung ES (2015) Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem 87:200–215

    Article  CAS  Google Scholar 

  5. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  6. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687

    Article  CAS  Google Scholar 

  7. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970

    Article  CAS  Google Scholar 

  8. Jaque D, Maestro LM, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Rodrìguez EM, Solé JG (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Article  CAS  Google Scholar 

  9. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  10. Sureka A, Santhanam V (2013) Optical properties of metal nanoparticles using DDA. J Young Investig 25:66–72

    Google Scholar 

  11. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Application in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  12. Gordon JA, Ziolkowski RW (2007) The design and simulated performance of a coated nanoparticle laser. Opt Express 15:2622–2653

    Article  CAS  Google Scholar 

  13. Peña O, Pal U, Rodríguez-Fernández L, Crespo-Sosa A (2008) Linear optical response of metallic nanoshells in different dielectric media. J Opt Soc Am B 25:1371–1379

    Article  Google Scholar 

  14. Tuersun P, Han X, Rn KF (2015) Backscattering properties of gold nanoshells: quantitative analysis and optimisation for biological imaging. Proc Engineering 102:1511–1519

    Article  CAS  Google Scholar 

  15. Schelm S, Smith GB (2005) Internal electric field densities of metal nanoshells. J Phys Chem B 109:1689–1694

    Article  CAS  Google Scholar 

  16. Wu D, Xu X, Liu X (2008) Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells. Solid State Commun 146:7–11

    Article  CAS  Google Scholar 

  17. Tunabe K (2008) Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C 112:15721–15728

    Article  Google Scholar 

  18. Huang Y, Gao L (2014) Superscattering of light from core-shell nonlocal plasmonics nanoparticles. J Phys Chem C 118:30170–30178

    Article  CAS  Google Scholar 

  19. Oldenburg SJ, Averitt RD, Wescott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  20. Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40

    Article  CAS  Google Scholar 

  21. Cheng Y, Lu G, Shen H, Wang Y, He Y, Chou RY, Gong Q (2015) Highly enhanced spontaneous emission with nanoshell-based metallodielectric hybrid antennas. Opt Commun 350:40–46

    Article  CAS  Google Scholar 

  22. Raschke G, Brogl S, Susha AS, Rogach AL, Klar TA, Feldmann J, Fieres B, Petkov N, Bein T, Nichtl A, Kurzinger K (2004) Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett 4:1853–1857

    Article  CAS  Google Scholar 

  23. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Scattering spectra of single gold nanoshells. Nano Lett 4:2355–2359

    Article  CAS  Google Scholar 

  24. Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO2–Au nanoshells for controlled drug delivery. J Cont Release 123:219–227

    Article  CAS  Google Scholar 

  25. Saini A, Maurer T, Lorenzo II, Santos AR, Béal J, Goffard J, Gérard D, Vial A, Plain J (2014) Synthesis and SERS application of SiO2@Au nanoparticles. Plasmonics 10:791–796

  26. Bohren CF, Huffman DR (1998) Absorption and Scattering of Light by Small Particles. Wiley, New York

    Book  Google Scholar 

  27. Suzuki H, I-Yin Lee S (2008) Calculation of the Mie scattering field inside and outside a coated spherical particle. Int J Phys Sci 3:038–041

    Google Scholar 

  28. Khashan MA, Nassif AY (2001) Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3μm. Opt Commun 188:129–139

    Article  CAS  Google Scholar 

  29. Humlícek J (2000) Properties of Silicon, Germanium and SiGe:Carbon. In: Kasper E, Lyutovich K (eds) EMIS Datareviews Series Vol. 24. INSPEC, London, UK

    Google Scholar 

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  31. Suzuki H, Lee I-YS (2013) Mie scattering field inside and near a coated sphere: computation and biomedical applications. J Quant Spectrosc Radiat Transf 126:56–60

    Article  CAS  Google Scholar 

  32. Pu L, Chgen H, Wang H, Yan J, Lin Z, Yang G (2015) Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection. J Phys Chem C 119:1234–1246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chehaidar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaabani, W., Chehaidar, A. & Plain, J. Comparative Theoretical Study of the Optical Properties of Silicon/Gold, Silica/Gold Core/Shell and Gold Spherical Nanoparticles. Plasmonics 11, 1525–1535 (2016). https://doi.org/10.1007/s11468-016-0206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0206-5

Keywords

Navigation