Skip to main content
Log in

High Performance Broadband Asymmetric Polarization Conversion Due to Polarization-dependent Reflection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present the underlying theory, the design specifications, and the simulated demonstration of a high performance broadband asymmetric polarization conversion composed of an L-shaped gold particle and a gold nanoantenna array for the near-infrared regime. It can transform linearly polarized light to its cross polarization in the transmission mode for one propagation direction and efficiently reflect the light for the opposite propagation direction. The broadband asymmetric polarization conversion can be attributed to the polarization-dependent reflection of the nanoantenna array, which enhances the polarization conversion efficiency of the L-shaped particle and makes it asymmetric and devisable. This work offers a further step in the development of a high efficiency broadband optical activity device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H-T, Tian J (2015) Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv Funct Mater 25:704

    Article  CAS  Google Scholar 

  2. Huang C-P, Wang Q-J, Yin X-G, Zhang Y, Li J-Q, Zhu Y-Y (2014) Break through the limitation of malus law with plasmonic polarizers. Adv Opt Mater 2:723–728

    Article  CAS  Google Scholar 

  3. Hao J, Yuan Y, Ran L, Jiang T, Kong JA, Chan CT, Zhou L (2007) Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 063908:99

    Google Scholar 

  4. Ye Y, He S (2010) 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl Phys Lett 96:203501

    Article  Google Scholar 

  5. Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E (2011) Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt Lett 36:1653–1655

    Article  Google Scholar 

  6. Li T, Wang SM, Cao JX, Liu H, Zhu SN (2010) Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl Phys Lett 261113:97

    Google Scholar 

  7. Wu S, Zhang Z, Zhang Y, Zhang KY, Zhou L, Zhang XJ, Zhu YY (2013) Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys Rev Lett 207401:110

    Google Scholar 

  8. Cheng H, Chen S, Yu P, Li J, Xie B, Li Z, Tian J (2013) Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl Phys Lett 223102:103

    Google Scholar 

  9. Zhao Y, Alú A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 205428:84

    Google Scholar 

  10. Zhao Y, Alú A (2013) Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-wave plates. Nano Lett 13:1086–1091

    Article  CAS  Google Scholar 

  11. Wei Z, Cao Y, Fan Y, Yu X, Li H (2011) Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl Phys Lett 99:221907

    Article  Google Scholar 

  12. Jiang SC, Xiong X, Hu YS, Hu YH, Ma GB, Peng RW, Sun C, Wang M (2014) Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X 4:021026

    Google Scholar 

  13. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DAR, Chen H-T (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304–1307

    Article  CAS  Google Scholar 

  14. Lévesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Ha\(\ddot {\i }\)dar R, Pelouard JL (2014) Plasmonic planar antenna for wideband and efficient linear polarization conversion. Appl Phys Lett 111105:104

  15. Wu C, Li H, Yu X, Li F, Chen H, Chan CT (2011) Metallic helix array as a broadband wave plate. Phys Rev Lett 177401:107

    Google Scholar 

  16. Zhao Y, Belkin MA, Alú A (2012) Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 3:870

    Article  CAS  Google Scholar 

  17. Singh R, Plum E, Zhang W, Zheludev NI (2010) Highly tunable optical activity in planar achiral terahertz metamaterials. Opt Express 18:13425–13430

    Article  CAS  Google Scholar 

  18. Sieber PE, Werner DH (2014) Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces. Opt Express 22:32371–32383

    Article  CAS  Google Scholar 

  19. Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI (2006) Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 167401:97

    Google Scholar 

  20. Drezet A, Genet C, Laluet JY, Ebbesen TW (2008) Optical chirality without optical activity: How surface plasmons give a twist to light. Opt Express 16:12559–12570

    Article  Google Scholar 

  21. CST Studio Suite Version (2013) Computer Simulation Technology AG, Darmstadt, Germany, 2013

  22. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1119

    Article  CAS  Google Scholar 

  23. Zhang S, Fan WJ, Malloy KJ, Brueck SRJ, Panoiu NC, Osgood RM (2006) Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies. J Opt Soc Am B 23:434–438

    Article  Google Scholar 

  24. Li Z, Chen S, Tang C, Liu W, Cheng H, Liu Z, Li J, Yu P, Xie B, Liu Z, Li J, Tian J (2014) Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial. Appl Phys Lett 201103:105

    Google Scholar 

  25. Esfandyarpour M, Garnett EC, Cui Y, McGehee MD, Brongersma ML (2014) Metamaterial mirrors in optoelectronic devices. Nat Nanotechnol 9:542–547

    Article  CAS  Google Scholar 

  26. Menzel C, Helgert C, Rockstuhl C, Kley EB, Tunnermann A, Pertsch T, Lederer F (2010) Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett 253902:104

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program (973 Program) of China (2012CB921900), the Chinese National Key Basic Research Special Fund (2011CB922003), the Natural Science Foundation of China (61378006 and 11304163), the Program for New Century Excellent Talents in University (NCET-13-0294), the International Science & Technology Cooperation Program of China (2013DFA51430), the Specialized Research Fund for the Doctoral Program of Higher Education (20120031120032), the Natural Science Foundation of Tianjin (13JCQNJC01900), the National Science Fund for Talent Training in Basic Sciences (J1103208), and the 111 project (B07013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqi Chen, Hua Cheng or Jianguo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, S., Liu, W. et al. High Performance Broadband Asymmetric Polarization Conversion Due to Polarization-dependent Reflection. Plasmonics 10, 1703–1711 (2015). https://doi.org/10.1007/s11468-015-9986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9986-2

Keywords

Navigation