Skip to main content
Log in

Narrow-Band Plasmonic Filter Based on Graphene Waveguide with Asymmetrical Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A narrow-band plasmonic filter based on graphene waveguide with asymmetrical structure is proposed, and the corresponding transmission characteristics are investigated. The asymmetrical structure consists of two sets of five air trenches with different trench sizes. Since the Bragg wavelength could be changed with the length and depth of each air trench, the bandgap (or the passband) of the single set with five short thick air trenches and the passband (or the bandgap) of the single set with five long thin air trenches are overlapped and the cascaded transmission of the two structures is very low in a certain wavelength range. By using the finite-difference time-domain (FDTD) method, a narrow-band transmission peak with 3-dB bandwidth of 0.12 μm could be obtained in the mid-infrared region around 6.9 μm. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu L, Han ZH, He SL (2005) Novel surface plasmon waveguide for high integration. Opt Express 13:6645–6650

    Article  Google Scholar 

  2. Soref R (2006) The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12:1678–1687

    Article  CAS  Google Scholar 

  3. Luo X, Zou XH, Li XF, Zhou Z, Pan W, Yan LS, Wen KH (2013) High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal-insulator-metal waveguide. Opt Lett 38:1585–1587

    Article  Google Scholar 

  4. Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107

    Article  Google Scholar 

  5. Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14:11318–11323

    Article  Google Scholar 

  6. Han ZH, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19:91–93

    Article  Google Scholar 

  7. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  8. Wen KH, Yan LS, Hu YH, Chen L, Lei L (2014) A plasmonic wavelength-selected intersection structure. Plasmonics 9:685–690

    Article  CAS  Google Scholar 

  9. Wen KH, Hu YH, Chen L, Zhou JY, Lei L, Guo Z (2014) Design of an optical power and wavelength splitter based on subwavelength waveguides. J Lightw Technol 32:3020–3026

    Article  Google Scholar 

  10. Berini P, Leon ID (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6:16–24

    Article  CAS  Google Scholar 

  11. Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  12. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  13. Tao J, Yu XC, Hu B, Dubrovkin A, Wang QJ (2014) Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth. Opt Lett 39:271–274

    Article  CAS  Google Scholar 

  14. Li HJ, Wang LL, Zhang H, Huang ZR, Sun B, Zhai X, Wen SC (2014) Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter. Appl Phys Express 7:024301

    Article  Google Scholar 

  15. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano- imaging. Nature 487:82–85

    CAS  Google Scholar 

  16. Li HJ, Wang LL, Liu JQ, Huang ZR, Sun B, Zhai X (2014) Tunable, mid-Infrared ultra-narrowband filtering effect induced by two coplanar graphene strips. Plasmonics 9:1239–1243

    Article  CAS  Google Scholar 

  17. Li HJ, Wang LL, Huang ZR, Sun B, Zhai X, Li XF (2013) Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system. EPL 104:37001

    Article  Google Scholar 

  18. Zhu XL, Yan W, Mortensen NA, Xiao SS (2013) Bends and splitters in graphene nanoribbon waveguides. Opt Express 21:3486–3491

    Article  CAS  Google Scholar 

  19. Xia FN, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843

    Article  CAS  Google Scholar 

  20. Liu M, Yin XB, Ulin-Avila E, Geng BS, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  CAS  Google Scholar 

  21. Yang K, Liu SC, Arezoomandan S, Nahata A, Sensale-rodriguez B (2014) Graphene-based tunable metamaterial terahertz filters. Appl Phys Lett 105:093105

    Article  Google Scholar 

  22. Li HJ, Wang LL, Liu JQ, Huang ZR, Sun B, Zai X (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103:211104

    Article  Google Scholar 

  23. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A (2014) Graphene based plasmonic tunable low-pass filters in the Terahertz band. IEEE T Nanotechnol 13:1145–1153

    Article  Google Scholar 

  24. Chen PY, Alu A (2011) Atomically-thin surface cloak using graphene monolayers. ACS Nano 5:5855–5863

    Article  CAS  Google Scholar 

  25. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100:131111

    Article  Google Scholar 

  26. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

  27. Kong XT, Bai B, Dai Q (2015) Graphene plasmon propagation on corrugated silicon substrates. Opt Lett 40:1–4

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61176116, 11074069) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120161130003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zhai, X., Wang, L. et al. Narrow-Band Plasmonic Filter Based on Graphene Waveguide with Asymmetrical Structure. Plasmonics 10, 1427–1431 (2015). https://doi.org/10.1007/s11468-015-9953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9953-y

Keywords

Navigation