Skip to main content
Log in

Periodically Varying Height in Metal Nano-pillars for Enhanced Generation of Localized Surface Plasmon Field

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) field condition study in metal nanostructure is important for different fields of applications which include chemical and bio-sensing investigations and in surface-enhanced Raman scattering (SERS)-based sensing investigations. Generally, sharp metal nano-tips, metal nano-colloids, nano-pillars and other sharp structures were used to generate different magnitudes of enhanced LSPR conditions, and all such structures usually provide tightly bound LSPR field conditions. In this paper, we demonstrate that with periodically varying height in metal nano-pillars, enhanced LSPR field condition can also be obtained and the enhancement scale of the generated field are found to be more than that of the uniformly structured metal nano-pillars. Different parameters which govern the enhancement factor for LSPR field condition have been thoroughly studied here. Since, periodic pattern of nano-pillars can be fabricated using lithographic tool such as e-beam lithography or focus-ion beam lithography, we envision that our simulation results would be useful in getting desired structure of the proposed nano-pillars for which it provides enhanced LSPR field condition as compared to uniformly structured metal nano-pillars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barchiesi D, Kessentini S, Guillot N, De La Chapelle ML, Grosges T (2013) Opt Express 21:2245

    Article  Google Scholar 

  2. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Acc Chem Res 41:1578

    Article  CAS  Google Scholar 

  3. Caliskan D, Butun B, Ozcan S, Ozbay E (2014) Opt Express 22:14096

    Article  Google Scholar 

  4. Soares L, Csáki A, Jatschka J, Fritzsche W, Flores O, Franco R, Pereira E (2014) Analyst 139:4964

    Article  CAS  Google Scholar 

  5. Malola S, Lehtovaara L, Enkovaara J, Hakkinen H (2013) ACS Nano 7:10263

    Article  CAS  Google Scholar 

  6. Ozhikandathil J, Packirisamy M (2014) Sensors 14:10497

    Article  CAS  Google Scholar 

  7. Li Y, Hu Y (2013) Appl Phys Lett 102:133103

    Article  Google Scholar 

  8. Shioi M, Jans H, Lodewijks K, Van Dorpe P, Lagae L, Kawamura T (2014) Appl Phys Lett 104:243102

    Article  Google Scholar 

  9. Senanayake P, Hung CH, Shapiro J, Scofield A, Lin A, Williams BS, Huffaker DL (2012) Opt Express 20:25489

    Article  Google Scholar 

  10. Kiraly B, Yang S, Huang TJ (2013) Nanotechnology 24:245704

    Article  Google Scholar 

  11. Caldwell JD, Glembocki OJ, Bezares FJ, Kariniemi MI, Niinistö JT, Hatanpää TT, Rendell RW, Ukaegbu M, Ritala MK, Prokes SM (2011) Opt Express 19:26056

    Article  CAS  Google Scholar 

  12. Choi CJ, Semancik S (2013) Nanoscale 5:8138

    Article  CAS  Google Scholar 

  13. Wu HY, Choi CJ, Cunningham BT (2012) Small 8:2878

    Article  CAS  Google Scholar 

  14. Choi CJ, Xu Z, Wu H-Y, Liu GL, Cunningham BT (2010) Nanotechnology 21:415301

    Article  Google Scholar 

  15. Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Langmuir 26:14943

    Article  CAS  Google Scholar 

  16. Horrer A, Schafer C, Broch K, Gollmer DA, Rogalski J, Fulmes J, Zhang D, Meixner AJ, Schreiber F, Kern DP, Fleischer M (2013) Small 9:3987

    Article  CAS  Google Scholar 

  17. Song HM, Deng L, Khashab NM (2013) Nanoscale 5:4321

    Article  CAS  Google Scholar 

  18. Yang Y, Huang Z, Nogami M, Tanemura M, Yamaguchi K, Li ZY, Zhou F, Huang YP (2011) J Nanosci Nanotechnol 11:10930

    Article  CAS  Google Scholar 

  19. Zhang W, Cui X, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7:1401

    Article  CAS  Google Scholar 

  20. Kneipp K, Kneipp H, Kneipp J (2006) Acc Chem Res 39:443

    Article  CAS  Google Scholar 

  21. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) J Phys Chem B 103:3854

    Article  CAS  Google Scholar 

  22. Guillot N, Shen H, Frémaux B, Peron O, Rinnert E, Toury T, De La Chapelle ML (2010) Appl Phys Lett 97:023113

    Article  Google Scholar 

  23. Haynes CL, Van Duyne RP (2003) J Phys Chem B 107:7426

    Article  CAS  Google Scholar 

  24. Mclellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) Nano Lett 7:1013

    Article  CAS  Google Scholar 

  25. Pinkhasova P, Yang L, Zhang Y, Sukhishvili S, Du H (2012) Langmuir 28:2529

    Article  CAS  Google Scholar 

  26. Kong X, Yu Q, Zhang X, Du X, Gong H, Jiang H (2012) J Mater Chem 22:7767

    Article  CAS  Google Scholar 

  27. Shevchenko A, Ovchinnikov V, Shevchenko A (2012) Appl Phys Lett 100:171913

    Article  Google Scholar 

  28. Multiphysics C (2012) COMSOL, AB

  29. Johnson PB, Christy R-W (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by SERB-DST, New Delhi, India, vide project no SERB/F/5522/2013-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabitra Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamuah, N., Nath, P. Periodically Varying Height in Metal Nano-pillars for Enhanced Generation of Localized Surface Plasmon Field. Plasmonics 10, 1367–1372 (2015). https://doi.org/10.1007/s11468-015-9926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9926-1

Keywords

Navigation