Skip to main content
Log in

Sensitivity Modelling of Graphene Nanoscroll-Based NO2 Gas Sensors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene nanoscrolls (GNSs) as a new category of quasi one-dimensional (1D) belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of exceptional structural and electronic properties of GNSs like high mobility, controllable band gap, and tunable core size have become a great stimuli for graphene researchers. Due to the importance and critical role of nanoscale sensors and biosensors in medical facilities and human life, using a promising material like graphene has been widely studied to achieve better accuracy and sensitivity in these devices. Up until now, the majority of surveys conducted previously have focused on experimental studies for sensors family. Therefore, there is lake of analytical models in comparison to experimental surveys. In order to start and understand about the modelling of gas sensors structure, the field effect transistor(FET)-based structure is employed as a basic. In this study, graphene nanoscroll conductivity has been evaluated under the impacts which is induced by the adsorption of different values of NO2 gas concentration on GNS surface. So that, when GNS-gas sensor is exposed to NO2 gas molecules, the carrier concentration of GNS is changed which leads to the changes in the conductance, and consequently, in the current, this phenomenon is considered as sensing mechanism. The I–V characteristic of graphene nanoscroll-based gas sensor has been considered as a criterion to detect the effect of gas adsorption. In order to verify the accuracy of the proposed model, the results have been compared with the existing experimental works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abadi H K F, Ahmadi MT, Yusof R, Saeidmanesh M, Rahmani M, Kiani MJ, Ghadiry M (2014) Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6(3):513–519. doi:10.1166/sam.2014.1745. http://www.ingentaconnect.com/content/asp/sam/2014/00000006/00000003/art00013

    Article  CAS  Google Scholar 

  2. Ahmadi MT, Webb JF, Amin NA, Mousavi SM, Sadeghi H, Neilchiyan MR, Ismail R (2011) Carbon nanotube capacitance model in degenerate and nondegenerate regimes. AIP Conf Proc 1337(1)

  3. Akbari E, Yousof R, Ahmadi MT, Kiani MJ, Rahmani M, Feiz Abadi HK, Saeidmanesh M (2014) The effect of concentration on gas sensor model based on graphene nanoribbon. Neural Comput Applic 24(1):143–146. doi:10.1007/s00521-013-1463-2

    Article  Google Scholar 

  4. Akbari E, Arora V, Enzevaee A, Ahmadi M, Khaledian M, Yusof R (2014) Gas concentration effects on the sensing properties of bilayer graphene. Plasmonics 9(4):987–992. doi:10.1007/s11468-014-9705-4

    Article  CAS  Google Scholar 

  5. Bae Sukang KHLYXXPJ-SZYJOBAJ-HHBH (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5(8). doi:10.1038/nnano.2010.132

  6. Baskaran G (2012) Physics of quanta and quantum fields in graphene 91–129. doi:10.1002/9783527651122.ch3

  7. Braga SF, Coluci VR, Legoas SB, Giro R, Galvo DS, Baughman RH (2004) Structure and dynamics of carbon nanoscrolls. Nano Lett 4(5):881–884

    Article  CAS  Google Scholar 

  8. Cao A, Meng G, Ajayan PM (2004) Nanobelt-templated growth of carbon nanotube rows. Adv Mater 16(1):40–44. doi:10.1002/adma.200305667

    Article  CAS  Google Scholar 

  9. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. doi:10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  10. Chen CW, Hung SC, Yang MD, Yeh CW, Wu CH, Chi GC, Ren F, Pearton SJ (2011) Oxygen sensors made by monolayer graphene under room temperature. Appl Phys Lett 99(24). doi:10.1063/1.3668105. http://scitation.aip.org/content/aip/journal/apl/99/24/10.1063/1.3668105

  11. Chen Y, Lu J, Gao Z. (2007) Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J Phys Chem C 111 (4):1625–1630. doi:10.1021/jp066030r

    Article  CAS  Google Scholar 

  12. Choi KJ, Jang HW (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Curr Appl Phys 10(4):1002–1004. doi:10.1016/j.cap.2009.12.024. http://www.sciencedirect.com/science/article/pii/S1567173909006117

  13. Chu L, Xue Q, Zhang T, Ling C (2011) Fabrication of carbon nanoscrolls from monolayer graphene controlled by p-doped silicon nanowires: a md simulation study. J Phys Chem C 115(31):15217–15224. doi:10.1021/jp2030768

    Article  CAS  Google Scholar 

  14. Datta S (2005) Quantum transport: atom to transistor

  15. Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Saeidmanesh M, Khaledian M, Karimi H, Yusof R (2014) An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications. Beilstein J Nanotechnol 5(1):726–734

  16. Fang T, Konar A, Xing H, Jena D (2007) Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl Phys Lett 91(9). doi:10.1063/1.2776887

  17. Grundmann M (2003) Nanoscroll formation from strained layer heterostructures. Appl Phys Lett 83(12)

  18. Hamzah A, Ahmadi MT, Ismail R (2013) Quantum capacitance effect on zig-zag graphene nanoscrolls (zgns) (16, 0). Mod Phys Lett B 27(01):1350002. doi:10.1142/S0217984913500024

    Article  Google Scholar 

  19. Hisamoto D, Lee W-C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King T-J, Bokor J, Hu C (2000) Finfet-a self-aligned double-gate mosfet scalable to 20 nm. Electron Devices, IEEE Trans on 47(12):2320–2325. doi:10.1109/16.887014

    Article  CAS  Google Scholar 

  20. Xia JLJ, Chen F, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509

    Article  CAS  Google Scholar 

  21. Johari Z, Ahmadi MT, Chang D, Chek Y, Amin NA, Ismail R (2010) Modelling of graphene nanoribbon fermi energy 2010:2–7. doi:10.1155/2010/909347

  22. Karimi Feiz Abadi H, Yusof R, Maryam Eshrati S, Naghib SD, Rahmani M, Ghadiri M, Akbari E, Ahmadi MT (2014) Currentvoltage modeling of graphene-based dna sensor. Neural Comput Applic 24(1):85–89. doi:10.1007/s00521-013-1464-1

    Article  Google Scholar 

  23. Khaledian M, Ahmadi MT, Ismail R, Saeidmanesh M (2014) Structural and properties of graphene nanobelts rolled up into spiral by a single graphene sheet. J Comput Theor Nanosci 11(3):601–606. doi:10.1166/jctn.2014.3401

    Article  CAS  Google Scholar 

  24. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710. doi:10.1038/nature07719

    Article  CAS  Google Scholar 

  25. Kliros GS (2010) Quantum capacitance of bilayer graphene 01, 69–72

  26. Ko H.-YAJPY-MLK-YKJ, Kim G (2010) Graphene-based nitrogen dioxide gas sensors. Sensors 10(4):4083–4099. doi:10.3390/s100404083. http://www.mdpi.com/1424-8220/10/4/4083

    Article  Google Scholar 

  27. Li MFHYCLTC, Lin TS (2012) Quantum transport in carbon nanoscrolls. Phys Lett A 376(4). doi:10.1016/j.physleta.2011.10.049

  28. Li X, Hao X, Zhao M, Wu Y, Yang J, Tian Y, Qian G (2013) Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater 25(15):2200–2204. doi:10.1002/adma.201204031

    Article  CAS  Google Scholar 

  29. Liang J, Akinwande D, Wong H-SP (2008) Carrier density and quantum capacitance for semiconducting carbon nanotubes. J Appl Phys 104(6). doi:10.1063/1.2986216

  30. Lin Z-D, Hsiao C-H, Young S-J, Huang C-S, Chang S-J, Wang S-B (2013) Carbon nanotubes with adsorbed au for sensing gas. Sensors J IEEE 13(6):2423–2427. doi:10.1109/JSEN.2013.2256124

    Article  CAS  Google Scholar 

  31. Lundstrom M, Guo J (2006) Basic concept,” in nanoscale transistors: device physics, modeling and simulation. ed 233 Spring Street, New York, NY 10013, USA: Springer 1–50

  32. Lundstrom M, Guo J (2005). In: 1st edn. (ed) Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer

  33. Martins BVC, Galvão DS (2010) Curved graphene nanoribbons: structure and dynamics of carbon nanobelts. Nanotechnology 21(7):075710. doi:10.1088/0957-4484/21/7/075710

    Article  CAS  Google Scholar 

  34. Meric Inanc.Han MYYAFOBKPSKL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Publ Group, Nat Nano 3(11). doi:10.1038/nnano.2008.268

  35. Mieszawska AJ, Jalilian R, Sumanasekera GU, Zamborini FP (2007) The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3(5):722–756. doi:10.1002/smll.200600727

    Article  CAS  Google Scholar 

  36. Mintmire JW, White CT (1998) Universal density of states for carbon nanotubes. Phys Rev Lett 81:2506–2509. doi:10.1103/PhysRevLett.81.2506

    Article  CAS  Google Scholar 

  37. Khaledian MSMTAEAM, Ismail Razal i (2014) Carrier statistics and quantum capacitance models of graphene nanoscroll. J Nanomater 2014:6. doi:10.1155/2014/762143

  38. MohammadTaghi WRIMR, Jeffrey Frank .A (2012) Carbon-based materials concepts and basic physics, pp 65–98

  39. Mpourmpakis G, Tylianakis E, Froudakis GE (2007) Carbon nanoscrolls: a promising material for hydrogen storage. Nano Lett 7(7):1893–1897. doi:10.1021/nl070530u. PMID: 17580924

    Article  CAS  Google Scholar 

  40. Neto AC, Geim A (2012) Graphene: Graphene’s properties. New Sci 214 (2863). doi:10.1016/S0262-4079(12)61116-6

  41. Nourbakhsh A, Cantoro M, Heyns MM, Sels BF, De Gendt S (2013) (invited) toward ambient-stable molecular gated graphene-fet: a donor/acceptor hybrid architecture to achieve bandgap in bilayer graphene. ECS Trans 53(1):121–129. doi:10.1149/05301.0121ecst. http://ecst.ecsdl.org/content/53/1/121.abstract

    Article  Google Scholar 

  42. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896. http://www.sciencemag.org/content/306/5696/666.abstract

    Article  CAS  Google Scholar 

  43. Parkash V, Goel K (2008) Quantum capacitance extraction for carbon nanotube interconnects, pp 292–295

  44. Peng X, Zhou J, Wang W, Cao D (2010) Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon 48(13):3760–3768. doi:10.1016/j.carbon.2010.06.038

    Article  CAS  Google Scholar 

  45. Perim E, Galvao DS (2009) The structure and dynamics of boron nitride nanoscrolls. Nanotechnology 20(33):335702

    Article  Google Scholar 

  46. Perim E, Paupitz R, Galvo DS (2013) Controlled route to the fabrication of carbon and boron nitride nanoscrolls: a molecular dynamics investigation. J Appl Phys 113(5). doi:10.1063/1.4790304

  47. Pourasl A, Ahmadi M, Rahmani M, Chin H, Lim C, Ismail R, Tan M (2014) Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res Lett 9(1). doi:10.1186/1556-276X-9-33

  48. Seyed ANAHMA, Hassan Abedi, Alireza Ahmadzadeh (2014) The role of endoscopic ultrasound in primary pancreatic lymphoma presented with acute pancreatitis: a case report, Journal of the Pancreas 0(0). http://www.omicsonline.com/open-access/the-role-of-endoscopic-ultrasound-in-primary-pancreatic-lymphoma-presented-with-acute-pancreatitis-a-case-report-1590-8577-15-158.pdf

  49. Qi Y-X, Li M-S, Bai Y-J (2007) Carbon nanobelts synthesized via chemical metathesis route. Mater Lett 61(45):1122–1124. doi:10.1016/j.matlet.2006.06.067. http://www.sciencedirect.com/science/article/pii/S0167577X06007737

    Article  CAS  Google Scholar 

  50. Rurali VRC R, Galvao DS (2006) Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations. Phys Rev B 74(8). doi:10.1103/PhysRevB.74.085414

  51. Dingle RB (1973) Asymptotic expansions: their derivation and interpretation. Academic Press Inc

  52. Saeidmanesh M, Ismail R, Khaledian M, Karimi H, Akbari E (2013) Threshold voltage roll-off modelling of bilayer graphene field-effect transistors. Semicond Sci Technol 28(12):125020. http://stacks.iop.org/0268-1242/28/i=12/a=125020

    Article  Google Scholar 

  53. Saeidmanesh M, Khaledian M, Ghadiry M, Ismail R (2014) Analytical study of subthreshold behaviour of double gate bilayer graphene field effect transistors. Semicond Sci Technol 29(11):115011. http://stacks.iop.org/0268-1242/29/i=11/a=115011

    Article  Google Scholar 

  54. Schaper AK, Hou H, Wang M, Bando Y, Golberg D (2011) Observations of the electrical behaviour of catalytically grown scrolled graphene. Carbon 49(6):1821–1828. doi:10.1016/j.carbon.2010.12.066

    Article  CAS  Google Scholar 

  55. Schwierz F (2010) Graphene transistors. Nat Nano, Nat Publ Group 5(7). doi:10.1038/nnano.2010.89

  56. Shi P N M G H , Xinghua (2010) Mechanics of carbon nanoscrolls: a review. Acta Mech Solida Sin 23(6). doi:10.1016/S0894-9166(11)60002-5

  57. Shi X, Pugno. NM, Gao H (2010) Mechanics of carbon nanoscrolls: a review. Acta Mech Solida Sin 23(6):484–497. doi:10.1016/S0894-9166(11)60002-5

  58. Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6(3):573–590. doi:10.1166/jnn.2006.121

    Article  CAS  Google Scholar 

  59. Skotnicki T, Hutchby JA, King T-J, Wong H.-S.P., Boeuf F (2005) The end of cmos scaling: toward the introduction of new materials and structural changes to improve mosfet performance. Circ Devices Mag IEEE 21 (1):16–26. doi:10.1109/MCD.2005.1388765

    Article  Google Scholar 

  60. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150. doi:10.1016/j.carbon.2010.01.058. http://www.sciencedirect.com/science/article/pii/S0008622310000928

    Article  CAS  Google Scholar 

  61. Viculis LM, Mack J J, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299 (5611):1361. doi:10.1126/science.1078842

    Article  CAS  Google Scholar 

  62. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634. doi:10.1103/PhysRev.71.622

    Article  CAS  Google Scholar 

  63. Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803. doi:10.1103/PhysRevLett.100.206803

    Article  Google Scholar 

  64. Wei L, Frank DJ, Chang L, Wong H-SP (2011) Noniterative compact modeling for intrinsic carbon-nanotube fets: quantum capacitance and ballistic transport. Electron Devices, IEEE Trans on 58(8):2456–2465. doi:10.1109/TED.2011.2153858

    Article  CAS  Google Scholar 

  65. Wisitsoraat A, Tuantranont A (2013) In Applications of nanomaterials in sensors and diagnostics, pp 103–141

  66. Xi G, Zhang M, Ma D, Zhu Y, Zhang H, Qian Y (2006) Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon 44 (4):734–741. doi:10.1016/j.carbon.2005.09.017. http://www.sciencedirect.com/science/article/pii/S0008622305005592

    Article  CAS  Google Scholar 

  67. Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F, Dong M (2010) Fabrication of carbon nanoscrolls from monolayer graphene. Small 6(18):2010–2019. doi:10.1002/smll.201000646

    Article  CAS  Google Scholar 

  68. Xia F, Farmer DB, Lin Y-m, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718. doi:10.1021/nl9039636. PMID: 20092332

    Article  CAS  Google Scholar 

  69. Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K (2009) Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett 9(7):2565–2570. doi:10.1021/nl900677y. PMID: 19499895

    Article  CAS  Google Scholar 

  70. Yan F, Zhang M, Li J (2014) Solution-gated graphene transistors for chemical and biological sensors. Adv Healthc Mater 3(3):313–331. doi:10.1002/adhm.201300221

    Article  CAS  Google Scholar 

  71. Zhang FY-JZ-YSX-CWL-NCL, Yan-Qin (2013) A novel glucose biosensor based on the immobilization of glucose oxidase on layer-by-layer assembly film of copper phthalocyanine functionalized graphene. Electrochim Acta 104. doi:10.1016/j.electacta.2013.04.099. http://www.sciencedirect.com/science/article/pii/S001346861300769X

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Research University grant of the Ministry of Higher Education (MOHE), Malaysia, under project Q.J130000.2523.04H99. Also, we would like to thank the Research Management Center (RMC) of the Universiti Teknologi Malaysia (UTM) for providing an excellent research environment where we completed this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razali Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaledian, M., Ismail, R., Saeidmanesh, M. et al. Sensitivity Modelling of Graphene Nanoscroll-Based NO2 Gas Sensors. Plasmonics 10, 1133–1140 (2015). https://doi.org/10.1007/s11468-015-9905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9905-6

Keywords

Navigation