Skip to main content
Log in

Ultrabroad Band Rainbow Capture and Releasing in Graded Chemical Potential Distributed Graphene Monolayer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose and numerically analyze a scheme to trap a broadband surface plasmon polariton (SPP) wave on a sheet of monolayer graphene with gradient chemical potential distribution. Different frequency components of the incident wave are trapped at different locations according to the chemical potential, resulting in “rainbow trapping” effect. By appropriately tuning the chemical potential distribution over the graphene sheet, graphene conductivity distribution is modified so that the trapped SPP wave is released. In the proposed structure, the group velocity of the trapped SPP waves is as low as the 10−8 times of the light speed in free space, and the lifetime of the trapped SPP wave is 3.14 ps when the relaxation of the graphene is 0.5 ps. This slow light system offers advantages simultaneously including broadband operation, ultracompact footprint, and dynamic control of group velocity without any complicated and expensive device geometry engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baba T (2008) Slow light in photonic crystals. Nat Photonics 2(8):465–473

    Article  CAS  Google Scholar 

  2. Gan Q, Ding YJ, Bartoli FJ (2009) “Rainbow” trapping and releasing at telecommunication wavelengths. Phys Rev Lett 102(5):56801

    Article  Google Scholar 

  3. Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819):490–493

    Article  CAS  Google Scholar 

  4. Lukin MD, Imamoğlu A (2001) Controlling photons using electromagnetically induced transparency. Nature 413(6853):273–276

    Article  CAS  Google Scholar 

  5. Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720):594–598

    Article  CAS  Google Scholar 

  6. Kash MM, Sautenkov VA, Zibrov AS, Hollberg L, Welch GR, Lukin MD, Rostovtsev Y, Fry ES, Scully MO (1999) Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys Rev Lett 82(26):5229

    Article  CAS  Google Scholar 

  7. Yanik MF, Fan S (2004) Stopping light all optically. Phys Rev Lett 92(8):83901

    Article  Google Scholar 

  8. Vlasov YA, O’Boyle M, Hamann HF, McNab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438(7064):65–69

    Article  CAS  Google Scholar 

  9. Okawachi Y, Bigelow MS, Sharping JE, Zhu Z, Schweinsberg A, Gauthier DJ, Boyd RW, Gaeta AL (2005) Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys Rev Lett 94(15):153902

    Article  Google Scholar 

  10. Lin Y, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  12. Liao L, Lin Y, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313):305–308

    Article  CAS  Google Scholar 

  13. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622

    Article  CAS  Google Scholar 

  14. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294

    Article  CAS  Google Scholar 

  15. Lim G, Chen Z, Clark J, Goh RG, Ng W, Tan H, Friend RH, Ho PK, Chua L (2011) Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat Photonics 5(9):554–560

    Article  CAS  Google Scholar 

  16. Zhao J, Liu X, Qiu W, Ma Y, Huang Y, Wang J, Qiang K, Pan J (2014) Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity. Opt Express 22(5):5754–5761

    Article  Google Scholar 

  17. Zhao J, Qiu W, Huang Y, Wang J, Kan Q, Pan J (2014) Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks. Opt Lett 39(19):5527–5530

    Article  CAS  Google Scholar 

  18. Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5(7):411–415

    Article  CAS  Google Scholar 

  19. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67

    Article  CAS  Google Scholar 

  20. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    Article  CAS  Google Scholar 

  21. Koppens FH, Chang DE, Garcia De Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11(8):3370–3377

    Article  CAS  Google Scholar 

  22. Chen L, Zhang T, Li X, Wang G (2013) Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate. Opt Express 21(23):28628–28637

    Article  Google Scholar 

  23. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726

    Article  CAS  Google Scholar 

  24. Efetov DK, Kim P (2010) Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105(25):256805

    Article  Google Scholar 

  25. Chen P, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5(7):5855–5863

    Article  CAS  Google Scholar 

  26. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111

    Article  Google Scholar 

  27. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  28. Mikhailov SA, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99(1):16803

    Article  CAS  Google Scholar 

  29. Reza A, Dignam MM, Hughes S (2008) Can light be stopped in realistic metamaterials. Nature 455(7216):E10–E11

    Article  CAS  Google Scholar 

  30. Chen L, Wang GP, Gan Q, Bartoli FJ (2009) Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes. Phys Rev B 80(16):161–161106

    Google Scholar 

  31. Kruglyak VV, Hicken RJ, Ali M, Hickey BJ, Pym A, Tanner BK (2005) Measurement of hot electron momentum relaxation times in metals by femtosecond ellipsometry. Phys Rev B 71(23):233104

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support by the Natural Science Fund of China under grant no. 61378058, the Science and Technology Fund of Quanzhou under grant no.Z1424009, and the Opened Fund of the Key Laboratory on Semiconductor Materials under grant no. KLSMS-1201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibin Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Liu, X., Zhao, J. et al. Ultrabroad Band Rainbow Capture and Releasing in Graded Chemical Potential Distributed Graphene Monolayer. Plasmonics 10, 1023–1028 (2015). https://doi.org/10.1007/s11468-015-9903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9903-8

Keywords

Navigation