Skip to main content
Log in

Sensing Performance of the Bragg Fiber-Based Plasmonic Sensors with Four Layers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report the application of the analytical and finite element methods to the analysis of the sensing performance for the Bragg fiber-based plasmonic sensors having four layers. The advantages of an optical fiber with four (SiO2, GaP, gold, and H2O) layers are a very large value of the amplitude sensitivity (3708.8 refractive index units (RIU)−1), large values of the loss (3091.0 dB/cm) and the power fraction P (0.36) at the loss matching point for the core mode in H2O, a small value of the full width at half maximum (19.4 nm), a smaller value (2.1 nm) of the difference Δλ between maximal amplitude sensitivity and resonant wavelengths, and a symmetric line shape of the wavelength-dependent loss but a small spectral sensitivity (3236 nmRIU−1). A modification in the geometry of the fiber produces a significant change in the sensitivity and in the propagation parameters of the device. Thus, the advantages of another optical fiber with four layers are a very large value of spectral sensitivity ( nmRIU−1), large values of the amplitude sensitivity (2084.4 RIU−1), and the loss (3214.5 dB/cm) and the power fraction P (0.35), but the difference Δλ is large (8.6 nm) and the line shape for the wavelength dependence of the imaginary part of the effective index is asymmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skorobogatiy M (2009) Microstructured and photonic bandgap fibers for applications in the resonant bio-and chemical sensors. J Sens 524237:1–20. doi:10.1155/2009/524237

    Article  Google Scholar 

  2. Gauvreau B, Hassani A, Fassi Fehri M, Kabashin A, Skorobogatiy M (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15(18):11413–11426. doi:10.1364/OE.15.011413

    Article  CAS  Google Scholar 

  3. Popescu VA, Puscas NN, Perrone G (2015) Efficient light absorption in a new Bragg fiber-based plasmonic sensor. J Opt Soc Am B 32(3):473–478. doi:10.1364/JOSAB.32.000473

    Article  CAS  Google Scholar 

  4. Dhara P, Fallauto C, Braglia A, Olivero M, Popescu VA, Puscas NN, Vallan A, Singh VK, Perrone G (2015) Optical fibers and sensors for medical diagnostics and treatment applications XV. In: Gannot I (ed) Proc. SPIE 9317: 1–9, San Francisco. doi:10.1117/12.2078157

  5. Popescu VA and Puscas NN (2015) Propagation characteristic in a new photonic fiber based plasmonic sensor. Rom. Rep. Phys. 67(2): 500–507, http://www.rrp.infim.ro/2015_67_2/A20.pdf

  6. Shuai B, Xia L, Zhang Y, Liu D (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20(6):5974–5986. doi:10.1364/OE.20.005974

    Article  CAS  Google Scholar 

  7. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biochemical species. Chem Rev 108:462–493. doi:10.1021/cr068107d

    Article  CAS  Google Scholar 

  8. Zhang Y, Xia L, Zhou C, Yu X, Liu H, Liu D, Zhang Y (2011) Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range. Opt Commun 284(18):4161–4166. doi:10.1016/j.optcom.2011.04.053

    Article  CAS  Google Scholar 

  9. Sharma AK, Rajan R, Gupta BD (2007) Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor. Opt Commun 274(2):320–326

    Article  CAS  Google Scholar 

  10. Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281:1486–1491

    Article  CAS  Google Scholar 

  11. Ghatak AK and Thyagarajan K (1999) Introduction to Fiber Optics, Cambridge University Press, New Delhi

  12. Daimon M, Masumura A (2007) Measurement of the refractive index of distilled water from the neared-infrared region to the ultraviolet region. Appl Opt 46(18):3811–3820

    Article  Google Scholar 

  13. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd Pt Ag, Ti, and W in the infrared and far infrared. Appl Opt 22(7):1099–1119

    Article  CAS  Google Scholar 

  14. Odhner H, Jacobs DT (2012) Refractive index of liquid D2O for visible wavelengths. J Chem Eng Data 57:166–168. doi:10.1021/je200969r

    Article  CAS  Google Scholar 

  15. Madarasz FL, Dimmock JO, Dietz N, Bachmann KL (2000) Sellmeier parameters for ZnGaP2 and GaP. J Appl Phys 87(3):1564–1565. doi:10.1063/1.372050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, V.A., Puscas, N.N. & Perrone, G. Sensing Performance of the Bragg Fiber-Based Plasmonic Sensors with Four Layers. Plasmonics 11, 1183–1189 (2016). https://doi.org/10.1007/s11468-015-0158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0158-1

Keywords

Navigation