Skip to main content
Log in

Influences of Nanostructure Arrays on Light Absorption in Amorphous Silicon Thin-Film Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

By means of finite-difference time-domain (FDTD) numerical method, we investigate the possibility to enhance the light absorption in solar cells by employing different nanostructures. The solar cells are made of 100-nm-thick amorphous silicon (α-Si). The impacts of gold nanohole arrays, dielectric nanosphere arrays, and gold nanoparticle arrays on the light absorption are simulated, compared, and analyzed. The results show that gold nanohole arrays functioning as the back reflective layer, dielectric nanosphere arrays, and gold nanoparticle arrays can significantly enhance the light absorption for the solar cells, and the former two can increase the short-circuit current by more than 40 %, showing a great potential to improve the utilization efficiency of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17(12):10195–10205

    Article  CAS  Google Scholar 

  2. Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21(34):3504–3509

    Article  CAS  Google Scholar 

  3. Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2012) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018

    Article  Google Scholar 

  4. Campa A, Isabella O, van Erven R, Peeters P, Borg H, Krc J, Topic M, Zeman M (2010) Optimal design of periodic surface texture for thin-film a-Si:H solar cells. Prog Photovolt Res Appl 18:160–167

    Article  CAS  Google Scholar 

  5. Solano ME, Barber GD, Lakhtakia A, Faryad M, Monk PB, Mallouk TE (2015) Buffer layer between a planar optical concentrator and a solar cell. AIP Adv 5:097150

    Article  Google Scholar 

  6. Solano M, Faryad M, Hall AS, Mallouk TE, Monk PB, Lakhtakia A (2013) Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating. Appl Opt 52(5):966–979

    Article  CAS  Google Scholar 

  7. Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. J Opt Soc Am B 16(10):1743–1748

    Article  CAS  Google Scholar 

  8. Grandidier J, Callahan DM, Munday JN, Atwater HA (2011) Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv Mater 23(10):1272–1276

    Article  CAS  Google Scholar 

  9. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  10. Pala RA, Liu J, Barnard ES, Askarov D, Garnett EC, Fan S, Brongersma ML (2013) Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nat Commun 4:1–7

    Article  Google Scholar 

  11. Wang J, He J, Wang L, Wang H, Zhou Y (2005) The implementation of straightforward mie scattering numerical calculation. J Appl Optics 4:004

    Google Scholar 

  12. Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley, America

    Google Scholar 

  13. Lee JY, Peumans P (2010) The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt Express 18(10):10078–10087

    Article  CAS  Google Scholar 

  14. Yang Y, Zhang Z, Jang D (1997) Numerical calculation of Mie scattering. J Appl Optics 18(4):17–19

    Google Scholar 

  15. Palik ED (1998) Handbook of Optical Constants of Solids. Academic Press. 3

Download references

Acknowledgments

We acknowledge the financial support by the National Natural Science Foundation of China (Grant Nos. 51375400 and 51375399), the Program for the New Star of Science and Technology of Shaanxi Province (Grant No. 2014KJXX-38), the Aeronautical Science Foundation of China (Grant No. 2013ZC53036), the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02020504), and the Program for the New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiting Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, X., Yu, Y. et al. Influences of Nanostructure Arrays on Light Absorption in Amorphous Silicon Thin-Film Solar Cells. Plasmonics 11, 1073–1079 (2016). https://doi.org/10.1007/s11468-015-0144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0144-7

Keywords

Navigation