Skip to main content
Log in

A Super Meta-Cone Absorber for Near-Infrared Wavelengths

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a meta-cone absorber based on metamaterials which can absorb nearly all incident light in the near-infrared spectrum. The absorber has an ultrahigh absorption with a broad receiving angle and independence of polarization state. This absorption enhancement can be attributed to the excitation of slow light mode and localized surface plasmon resonances (LSPR). In addition, we use slow light theory to explain why incident light with different wavelengths are trapped at different positions. We believe our work will provide a promising candidate as absorbing elements in technical applications and scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu XL, Starr T, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near unity absorbance. Phys Rev Lett 104(20):207403

    Article  Google Scholar 

  2. Landy N, Bingham C, Tyler T, Jokerst N, Smith D, Padilla W (2009) Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys Rev B 79(12):125104

    Article  Google Scholar 

  3. Diem M, Koschny T, Soukoulis CM (2009) Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 79(3):033101

    Article  Google Scholar 

  4. Zhu J, Yu Z, Burkhard GF, Hsu C-M, Connor ST, Xu Y, Wang Q, Fan S, Cui Y (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 10:1021

    Google Scholar 

  5. Chalabi H, Schoen D, Brongersma ML (2014) Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 14:1374–1380

    Article  CAS  Google Scholar 

  6. Yen-Hsun S, Ke Y-F, Cai S-l, Yao Q-Y (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci Appl 10:1038

    Google Scholar 

  7. Te Lin K, Chen H-L, Lai Y-S, Yu C-C (2014) Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nat Commun 5:3288

    Google Scholar 

  8. Schurig D, Mock J, Justice B, Cummer S, Pendry J, Starr A, Smith D (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:5801

    Article  Google Scholar 

  9. Pendry J (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  10. Fok L, Zhang X (2011) Negative acoustic index metamaterial. Phys Rev B 83:214304

    Article  Google Scholar 

  11. Almoneefand TS, Ramahi OM (2015) Metamaterial electromagnetic energy harvester with near unity efficiency. Appl Phys Lett 106:153902

    Article  Google Scholar 

  12. Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:009401

    Article  CAS  Google Scholar 

  13. Wang B-X, Wang G-Z, Wang L-L (2015) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 14:114012

    Google Scholar 

  14. Dong X, Tao K, Wang Q (2015) Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array. Plasmonics 10:1007

    Article  Google Scholar 

  15. Grześkiewicz B, Sierakowski A, Marczewski J, Pałka N, Wolarz E (2014) Polarization-insensitive metamaterial absorber of selective response in terahertz frequency range. J Opt 16:105104

    Article  Google Scholar 

  16. Sun C, Su J, Wang X (2015) A design of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10:1007

    Google Scholar 

  17. Cao S, YU W, Wang T, Xu Z, Wang C, Fu Y, Liu Y (2013) Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption. Appl Phys Lett 102:161109

    Article  Google Scholar 

  18. TC Choy (1999) Effective medium theory: principles and applications. Oxford University Press on Demand 102

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  20. ED Palik (1998) Handbook of optical constants of solids. Academic press

  21. Baba T (2008) Slow light in photonic crystal. Nat Photonics 2:146

    Article  Google Scholar 

  22. T Jiang, YJ Feng (2008) In: Proceedings of the International Conference on Microwave and Millimeter Wave Technology

  23. Jiang T, Zhao J, Feng Y (2009) Stopping light by an air waveguide with anisotropic metamaterial cladding. Opt Express 19:170–177

    Article  Google Scholar 

  24. Hu H, Ji D, Xie Z, Liu K, Gan Q (2013) Rainbow trapping in hyperbolic metamaterial waveguide. Sci Rep 3:1249

    Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Nos. 61306125 and U1435210), the Science and Technology Innovation Project (Y3CX1SS143) of CIOMP, the Science and Technology Innovation Project of Jilin Province (Nos. Y3293UM130, 20130522147JH, and 20140101176JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haigui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Gao, J., Yang, H. et al. A Super Meta-Cone Absorber for Near-Infrared Wavelengths. Plasmonics 11, 1067–1072 (2016). https://doi.org/10.1007/s11468-015-0143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0143-8

Keywords

Navigation