Skip to main content
Log in

Enhancement of Optical Nonlinearity by Core-Shell Bimetallic Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose an alternative way to enhance optical nonlinearity from nanocomposites containing nonlinear bimetallic nanostructures. The optical nonlinearity enhancement are due to two aspects: firstly, the intrinsic large nonlinearity of metallic material in core and shell; secondly, the coupling of dipole modes gives rise to symmetric and antisymmetric resonance, which strengthen the local fields in the core and shell. By fine adjustment of the core-shell size ratio, it is possible to achieve maximal enhancement of optical nonlinearity from bimetallic coated nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarychev AK, Shalaev VM (2000) Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys Rep 335:275–374

    Article  CAS  Google Scholar 

  2. Shalaev VM (2000) Nonlinear optics of random media: fractal composites and metal-dielectric films. Springer, Berlin

    Google Scholar 

  3. Huang JP, Yu KW (2006) Enhanced nonlinear optical responses of materials: composite effects. Phys Rep 431:87–172

    Article  CAS  Google Scholar 

  4. Qiu CW, Gao L, Joannopoulos JD, Soljačić M (2009) Light scattering from anisotropic particles: propagation, localization, and nonlinearity. Laser Photon Rev 4:268–282

    Article  CAS  Google Scholar 

  5. Zhang X, Liu H, Zhong Y (2013) Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns. Opt Express 21:24139–24153

    Article  CAS  Google Scholar 

  6. Yan Z, Chen X, Du W, Chen Z, Zhan P, Wang HT, Wang Z (2014) Near-field plasmonic coupling for enhanced nonlinear absorption by femtosecond pulses in bowtie nanoantenna arrays. Appl Phys A 117:1841–1848

    Article  CAS  Google Scholar 

  7. Suh JY, Odom TW (2013) Nonlinear properties of nanoscale antennas. Nano Today 8:469–479

    Article  CAS  Google Scholar 

  8. Zhu J, Li JJ, Zhao JW (2014) The effect of dielectric coating on the local electric field enhancement of Au-Ag core-shell nanoparticles. Plasmonics 10:1–8

    Article  CAS  Google Scholar 

  9. Stroud D, Hui PM (1988) Nonlinear susceptibilities of granular matter. Phys Rev B 37:8719–8724

    Article  Google Scholar 

  10. Stroud D, Wood VE (1989) Decoupling approximation for the nonlinear-optical response of composite media. J Opt Soc Am B 6:778–786

    Article  CAS  Google Scholar 

  11. Sipe JE, Boyd RW (1992) Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys Rev A 46:1614–1629

    Article  CAS  Google Scholar 

  12. Yu KW, Hui PW, Stroud D (1993) Effective dielectric response of nonlinear composites. Phys Rev B 47:14150–14156

    Article  Google Scholar 

  13. Yuen KP, Law MF, Yu KW et al (1997) Optical nonlinearity enhancement via geometric anisotropy. Phys Rev E 56:1322–1325

    Article  Google Scholar 

  14. Wang WT, Chen ZH, Yang G et al (2003) Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters. Appl Phys Lett 83:1983–1985

    Article  CAS  Google Scholar 

  15. Gao L, Yu KW, Li ZY et al (2001) Effective nonlinear optical properties of metal-dielectric composite media with shape distribution[J]. Phys Rev E 64(3):036615

    Article  CAS  Google Scholar 

  16. Gao L, Huang JP, Yu KW (2004) Effective nonlinear optical properties of composite media of graded spherical particles. Phys Rev B 69:075105

    Article  CAS  Google Scholar 

  17. Huang JP, Yu KW (2004) Optical nonlinearity enhancement of graded metallic films. Appl Phys Lett 85:94–96

    Article  CAS  Google Scholar 

  18. Guan DY, Chen ZH, Zhou YL et al (2006) Peaks separation of the nonlinear refraction and nonlinear absorption induced by external electric field. Appl Phys Lett 88:111911

    Article  CAS  Google Scholar 

  19. Goncharenko AV, Chang YC (2007) Optical properties of core-shell particle composites. II Nonlinear Response Chem Phys Lett 439:121–126

    CAS  Google Scholar 

  20. Kim KH, Husakou A, Herrmann J (2010) Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes. Opt Express 18:7488–7496

    Article  CAS  Google Scholar 

  21. Mohan S, Lange J, Graener H et al (2012) Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass. Opt Express 20:28655–28663

    Article  Google Scholar 

  22. Nan F, Liang S, Liu XL et al (2013) Sign-reversed and magnitude-enhanced nonlinear absorption of Au–CdS core–shell hetero-nanorods. Appl Phys Lett 102:163112

    Article  CAS  Google Scholar 

  23. Panasyuk GY, Schotland JC, Markel VA (2008) Classical theory of optical nonlinearity in conducting nanoparticles. Phys Rev Lett 100:047402

    Article  CAS  Google Scholar 

  24. Li M, Zhang ZS, Zhang X et al (2006) Optical properties of Au/Ag core/shell nanoshuttles. Opt Express 16:14288–14293

    Article  CAS  Google Scholar 

  25. Sun L, Luan WL, Shan WJ (2012) A composition and size controllable approach for Au-Ag alloy nanoparticles. Nanoscale Res Lett 7:225

    Article  CAS  Google Scholar 

  26. Jafarkhani P, Torkamany MJ, Chehrghani A, Sabbaghzadeh J (2011) Necklace-shaped Au-Ag nanoalloys: laser-assisted synthesis and nonlinear optical properties. Nanotechnology 22:235703

    Article  CAS  Google Scholar 

  27. Polavarapul MV, Guan ZP et al (2012) Huge enhancement of optical nonlinearities in coupled metal nanoparticles induced by conjugated polymers. Appl Phys Lett 100:023106

    Article  CAS  Google Scholar 

  28. Rong H, Liu A, Nicolaescu R, Paniccia M, Cohen O, Hak D (2004) Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Appl Phys Lett 85:2196

    Article  CAS  Google Scholar 

  29. Ikeda K, Fainman Y (2006) Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide. Opt Lett 31:3486–3488

    Article  CAS  Google Scholar 

  30. Liu Y, Tsang HK (2006) Nonlinear absorption and raman gain in helium ion implanted silicon. Opt Lett 31:1714–1716

    Article  CAS  Google Scholar 

  31. Pu Y, Grange R, Hsieh CL, Psaltis D (2010) Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104:207402

    Article  CAS  Google Scholar 

  32. Seo JT, Yang Q, Kim WJ et al (2009) Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Opt Lett 34:307–309

    Article  CAS  Google Scholar 

  33. Zhang YF, Wang JH, Ma L et al (2015) Growth of silver-coated gold nanoshells with enhanced linear and nonlinear optical responses. J Nanopart Res 17:157

    Article  CAS  Google Scholar 

  34. Pena-Rodriguza O, Pal U (2011) Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3:3609–3612

    Article  CAS  Google Scholar 

  35. Zhu J (2005) Theoretical study of the optical absorption properties of Au–Ag bimetallic nanospheres. Phys E 27:296–301

    Article  CAS  Google Scholar 

  36. Liao HB, Xiao RF, Fu JS et al (1997) Large third-order nonlinearity in Au:SiO2 composite films near percolation threshold. Appl Phys Lett 70:1–3

    Article  CAS  Google Scholar 

  37. Kolwas K, Derkachova A, Shopa M (2009) Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J Quant Spectrosc Ra 110:1490–1504

    Article  CAS  Google Scholar 

  38. Garcia H, Kalyanaraman R, Sureshkumar R (2009) Nonlinear optical properties of multi-metal nanocomposites in a glass matrix. J Phys B 42:175401

    Article  CAS  Google Scholar 

  39. Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires. Nanoscale Res Lett 4:977–981

    Article  CAS  Google Scholar 

  40. Prodan E, Radloff C, Halas NJ et al (2013) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  41. Huang Y, Gao L (2013) Nonlocal effects on surface enhanced Raman scattering from bimetallic coated nanoparticles. Progress Electromagnet Res 133:1–15

    Article  Google Scholar 

  42. Gao L, Gu LP, Li ZY (2003) Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles. Phys Rev E 68:066601

    Article  CAS  Google Scholar 

  43. Gao DL, Gao L (2010) Goos–Hänchen shift of the reflection from nonlinear nanocomposites with electric field tunability. Appl Phys Lett 97:041903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NNSF of China (No. 11374223), the National Basic Research Program (No. 2012CB921501), the Ph.D. Program Foundation of the Ministry of Education of China (No. 20123201110010), the PAPD of Jiangsu Higher Education Institutions, the Natural Science Foundation for the Youth of Jiangsu Province (No. BK20130284), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province of China (No. 15KJB140008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongliang Gao or Lei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Gao, D., Ni, Y. et al. Enhancement of Optical Nonlinearity by Core-Shell Bimetallic Nanostructures. Plasmonics 11, 183–187 (2016). https://doi.org/10.1007/s11468-015-0036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0036-x

Keywords

Navigation