Skip to main content

Advertisement

Log in

High-Efficiency Plasmonic Metamaterial Selective Emitter Based on an Optimized Spherical Core-Shell Nanostructure for Planar Solar Thermophotovoltaics

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a high-efficiency plasmonic metamaterial selective emitter based on a tungsten (W) spherical core-shell nanostructure for potential applications in planar solar thermophotovoltaics. This structure consists of silicon dioxide (SiO2)-coated W nanospheres periodically distributed on a W substrate and a thin W layer deposited on top. Using a new definition of spectral efficiency, numerical optimization is performed and its optical behaviors are systematically investigated. The numerical results show that our selective emitter has a high emissivity in the short wavelength range below the wavelength corresponding to the bandgap of the back photovoltaic cell and a low emissivity in the long wavelength range beyond it. Its spectral efficiency of 0.39 is much higher than those of other cases without the top W cover layer or the W nanospheres. Such excellent emission selectivity is attributed to the strong photonic interaction within the gaps between the adjacent core-shell nanospheres, the tightly confined optical fields in both the Ω-shaped W-SiO2-W nanocavities, and the bottom nanocavities formed by the W nanospheres and the W substrate. It is also very tolerant toward the thicknesses of the SiO2 layer and the top W cover layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  2. Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11:174–177

    Article  CAS  Google Scholar 

  3. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2014) Solar cell efficiency tables (version 43). Prog Photovolt 22:1–9

    Article  Google Scholar 

  4. Friedman DJ (2010) Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr Opin Solid State Mater 14:131–138

    Article  CAS  Google Scholar 

  5. Barnett A, Kirkpatrick D, Honsberg C, Moore D, Wanlass M, Emery K, Schwartz R, Carlson D, Bowden S, Aiken D, Gray A, Kurtz S, Kazmerski L, Steiner M, Gray J, Davenport T, Buelow R, Takacs L, Shatz N, Bortz J, Jani O, Goossen K, Kiamilev F, Doolittle A, Ferguson I, Unger B, Schmidt G, Christensen E, Salzman D (2009) Very high efficiency solar cell modules. Prog Photovolt 17:75–83

    Article  CAS  Google Scholar 

  6. Wedlockt B (1963) Thermo-photo-voltaic energy conversion. Proc IEEE 51:694–698

    Article  Google Scholar 

  7. Harder NP, Wurfel P (2003) Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Tech 18:S151–S157

    Article  CAS  Google Scholar 

  8. Lenert A, Bierman DM, Nam Y, Chan WR, Celanovic I, Soljačić M, Wang EN (2014) A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 9:126–130

    Article  CAS  Google Scholar 

  9. Rinnerbauer V, Lenert A, Bierman DM, Yeng YX, Chan WR, Geil RD, Senkevich JJ, Joannopoulos JD, Wang EN, Soljačić M, Celanovic I (2014) Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv Energy Mater 4:1400334

    Article  Google Scholar 

  10. Chubb DL, Pal AT, Patton MO, Jenkins PP (1999) Rare earth doped high temperature ceramic selective emitters. J Eur Ceram Soc 19:2551–2562

    Article  CAS  Google Scholar 

  11. Bitnar B, Durisch W, Mayor JC, Sigg H, Tschudi HR (2002) Characterisation of rare earth selective emitters for thermophotovoltaic applications. Sol Energy Mater Sol Cells 73:221–234

    Article  CAS  Google Scholar 

  12. Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M (2004) The origin of highly efficient selective emission in rare-earth oxides for thermophotovoltaic applications. Nat Mater 3(9):632–637

    Article  CAS  Google Scholar 

  13. Rephaeli E, Fan S (2009) Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt Express 17:15145–15159

    Article  CAS  Google Scholar 

  14. Bermel P, Ghebrebrhan M, Chan W, Yeng YX, Araghchini M, Hamam R, Marton CH, Jensen KF, Soljačić M, Joannopoulos JD (2010) Design and global optimization of high-efficiency thermophotovoltaic systems. Opt Express 18:A314–A334

    Article  Google Scholar 

  15. Nam Y, Yeng YX, Lenert A, Bermel P, Celanovic I, Soljačić M, Wang EN (2014) Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Sol Energy Mater Sol Cells 122:287–296

    Article  CAS  Google Scholar 

  16. Chou JB, Yeng YX, Lenert A, Rinnerbauer V, Celanovic I, Soljačić M, Wang EN, King SG (2014) Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications. Opt Express 22:A144–A154

    Article  Google Scholar 

  17. Yeng Y, Ghebrebrhan M, Bermel P, Chan WR, Joannopoulos JD, Soljačić M, Celanovic I (2012) Enabling high-temperature nano-photonics for energy applications. Proc Natl Acad Sci U S A 109:2280–2285

    Article  CAS  Google Scholar 

  18. Arpin KA, Losego MD, Cloud AN, Ning H, Mallek J, Sergeant NP, Zhu L, Yu Z, Kalanyan B, Parsons GN, Girolami GS, Abelson JR, Fang S, Braun PV (2013) Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat Commun 4:2063

    Article  Google Scholar 

  19. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

  20. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120

    CAS  Google Scholar 

  21. Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. John Wiley and Sons, New York

    Google Scholar 

  22. Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901

    Article  Google Scholar 

  23. Wu CH, Neuner B, John J, Milder A, Zollars B, Savoy S, Shvets G (2012) Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J Optics UK 14:024005

    Article  Google Scholar 

  24. Molesky S, Dewalt CJ, Jacob Z (2013) High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt Express 21:A96–A110

    Article  Google Scholar 

  25. Datas A, Algora C (2013) Global optimization of solar thermophotovoltaic systems. Prog Photovolt 21:1040–1055

  26. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

  27. Cho CH, Aspetti CO, Turk ME, Kikkawa JM, Nam SW, Agarwal R (2011) Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat Mater 10:669–675

  28. Cho CH, Aspetti CO, Park J, Agarwal R (2013) Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat Photonics 7:285–289

  29. Yang L, Mo L, Okuno Y, He S (2014) Optimal design of ultra-broadband, omnidirectional, and polarization-insensitive amorphous silicon solar cells with a core-shell nanograting structure. Prog Photovolt 21:1077–1086

  30. Zhan YH, Zhao JP, Zhou CH, Alemayehu M, Li YP, Li Y (2012) Enhanced photon absorption of single nanowire alpha-Si solar cells modulated by silver core. Opt Express 20:11506–11516

  31. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9:887–891

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 61307078, 91233208, and 91233119), the National High Technology Research and Development Program (863) of China (Nos. 2012AA030402 and 2013AA014401), the Zhejiang Provincial Key Project (No. 2011C11024), the Specialized Research Fund for the Doctoral Program of Higher Education and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu Yang or Sailing He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, L., Yang, L., Lee, E.H. et al. High-Efficiency Plasmonic Metamaterial Selective Emitter Based on an Optimized Spherical Core-Shell Nanostructure for Planar Solar Thermophotovoltaics. Plasmonics 10, 529–538 (2015). https://doi.org/10.1007/s11468-014-9837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9837-6

Keywords

Navigation