Skip to main content

Advertisement

Log in

Application of AAO Matrix in Aligned Gold Nanorod Array Substrates for Surface-Enhanced Fluorescence and Raman Scattering

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we probed surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from probe molecule Rhodamine 6G (R6G) on self-standing Au nanorod array substrates made using a combination of anodization and potentiostatic electrodeposition. The initial substrates were embedded within a porous alumina template (AAO). By controlling the thickness of the AAO matrix, SEF and SERS were observed exhibiting an inverse relationship. SERS and SEF showed a non-linear response to the removal of AAO matrix due to an inhomogeneous plasmon activity across the nanorod which was supported by FDTD calculations. We showed that by optimizing the level of AAO thickness, we could obtain either maximized SERS, SEF or simultaneously observe both SERS and SEF together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hayashi S, Okamoto T (2012) Plasmonics: visit the past to know the future. J Phys D Appl Phys 45(43):433001

    Article  Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97(20):206806

    Article  Google Scholar 

  4. Maier SA, Atwater HA (2005) Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101

    Article  Google Scholar 

  5. Al-Alttar N, Kopf I, Flavin K, Kennedy E, Giordani S, Rice JH (2013) Surface-enhanced Raman scattering spectra of radial breathing and G band modes in functionalised nanotubes. Chem Phys Lett 568:95–100

    Article  Google Scholar 

  6. Lordan F, Damm S, Kennedy E, Mallon C, Forster RJ, Keyes TE, Rice JH (2013) The effect of Ag nanoparticles on surface-enhanced luminescence from Au nanovoid arrays. Plasmonics 8(4):1567–1575

    Article  CAS  Google Scholar 

  7. Damm S, Carville NC, Rodriguez BJ, Manzo M, Gallo K, Rice JH (2012) Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods. J Phys Chem C 116(50):26543–26550

    Article  CAS  Google Scholar 

  8. Carville NC, Manzo M, Damm S, Castiella M, Collins L, Denning D et al (2012) Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals. ACS Nano 6(8):7373–7380

    Article  CAS  Google Scholar 

  9. Al-Attar N, Kopf I, Kennedy E, Flavin K, Giordani S, Rice JH (2012) Surface-enhanced Raman scattering from small numbers of purified and oxidised single-walled carbon nanotubes. Chem Phys Lett 535:146–151

    Article  CAS  Google Scholar 

  10. Lordan F, Rice JH, Jose B, Forster RJ, Keyes TE (2012) Effect of cavity architecture on the surface-enhanced emission from site-selective nanostructured cavity arrays. J Phys Chem C 116(2):1784–1788

    Article  CAS  Google Scholar 

  11. Lordan F, Rice JH, Jose B, Forster RJ, Keyes TE (2011) Site selective surface enhanced Raman on nanostructured cavities. Appl Phys Lett 99(3):033104

    Article  Google Scholar 

  12. Liu SY, Huang L, Li JF, Wang C, Li Q, Xu HX et al (2013) Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods. J Phys Chem C 117(20):10636–10642

    Article  CAS  Google Scholar 

  13. Hu M et al (2006) Gold nanostructures: engineering their plasmonic properties for biomedical Applications. Chem Soc Rev 35(11):1084–1094

    Article  CAS  Google Scholar 

  14. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110(32):15666–15675

    Article  CAS  Google Scholar 

  15. Damm S, Carville NC, Manzo M, Gallo K, Lopez SG, Keyes TE et al (2013) Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays. Appl Phys Lett 103(8):083105

    Article  Google Scholar 

  16. Rice JH, Aures R, Galaup JP, Leach S (2001) Fluorescence spectroscopy of C60 in toluene solutions at 5 K. Chem Phys 263(2):401–414

    Article  CAS  Google Scholar 

  17. Ne JH, Park YS, Rice JH, Taylor RA (2005) Time-resolved and time-integrated photoluminescence studies of coupled asymmetric GaN quantum discs embedded in AlGaN barriers. Appl Phys Lett 86:083109–083112

    Article  Google Scholar 

  18. Lordan F, Rice JH, Jose B, Forster RJ, Keyes TE (2010) Surface enhanced resonance Raman and luminescence on plasmon active nanostructured cavities. Appl Phys Lett 97(15):153110

    Article  Google Scholar 

  19. Rice JH, Galaup JP, Leach S (2002) Fluorescence and phosphorescence spectroscopy of C70 in toluene at 5 K: site dependent low lying excited states. Chem Phys 279(1):23–41

    Article  CAS  Google Scholar 

  20. Kennedy E, Al-Majomaie R, Zerulla D, Al-Rubeai M, Rice JH (2014) Human epithelial cancer cells studied using combined AFM-IR absorption nanoimaging. In SPIE Photonics Europe (pp. 91291M-91291M). International Society for Optics and Photonics

  21. Li XV, Cole RM, Milhano CA, Bartlett PN, Baumberg JJ, Soares BF, De Groot C (2009) The fabrication of plasmonic Au nano-void trench arrays by guided self-assembly. Nanotechnology 20(28):285309–285316

    Article  Google Scholar 

  22. Murphy A, Sonnefraud Y, Krasavin AV, Ginzburg P, Morgan F, McPhillips J et al (2013) Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials. Appl Phys Lett 102(10):103103

    Article  Google Scholar 

  23. Doherty MD, Murphy A, Pollard RJ, Dawson P (2013) Surface-enhanced Raman scattering from metallic nanostructures: bridging the gap between the near-field and far-field responses. Phys Rev X 3(1):011001

    Google Scholar 

  24. Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy V, Zayats AV (2011) Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat Nanotechnol 6:106–110

    Article  Google Scholar 

  25. Evans PR, Kullock R, Hendren WR, Atkinson R, Pollard RJ, Eng LM (2008) Optical transmission properties and electric field distribution of interacting 2D silver nanorod arrays. Adv Funct Mater 18(7):1075–1079

    Article  CAS  Google Scholar 

  26. Lyvers DP, Moon JM, Kildishev AV, Shalaev VM, Wei A (2008) Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2(12):2569–2576

    Article  CAS  Google Scholar 

  27. Doherty MD, Murphy A, McPhillips J, Pollard RJ, Dawson P (2010) Wavelength dependence of Raman enhancement from gold nanorod arrays: quantitative experiment and modeling of a hot spot dominated system. J Phys Chem C 114(47):19913–19919

    Article  CAS  Google Scholar 

  28. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109(22):11279–11285

    Article  CAS  Google Scholar 

  29. Fort E, Grésillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41(1):013001

    Article  Google Scholar 

  30. Geddes CD, Lakowicz JR (2002) Editorial: Metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Article  Google Scholar 

  31. Gabudean AM, Focsan M, Astilean S (2012) Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). J Phys Chem C 116(22):12240–12249

    Article  CAS  Google Scholar 

  32. Evans P, Hendren WR, Atkinson R, Wurtz GA, Dickson W, Zayats AV, Pollard RJ (2006) Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17(23):5746–5753

    Article  CAS  Google Scholar 

  33. Liao Q, Mu C, Xu DS, Ai XC, Yao JN, Zhang JP (2009) Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering. Langmuir 25(8):4708–4714

    Article  CAS  Google Scholar 

  34. Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128(7):2200–2201

    Article  CAS  Google Scholar 

  35. Yao JL, Tang J, Wu DY, Sun DM, Xue KH, Ren B et al (2002) Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surf Sci 514(1):108–116

    Article  CAS  Google Scholar 

  36. Penzkofer A, Leupacher W (1987) Fluorescence behaviour of highly concentrated rhodamine 6G solutions. J Lumin 37(2):61–72

    Article  CAS  Google Scholar 

  37. Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Resonant field enhancements from metal nanoparticle arrays. Nano Lett 4(1):153–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650) and (10/IN.1/B3025). The Nanophotonics and Nanoscopy Research Group is supported by SFI grants 11/RFP.1/MTR/3151, 12/IP/1556, and 09/RFP/PHY2398. A. Murphy, M. McMillen, and R. J. Pollard would like to acknowledge support from EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Rice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damm, S., Lordan, F., Murphy, A. et al. Application of AAO Matrix in Aligned Gold Nanorod Array Substrates for Surface-Enhanced Fluorescence and Raman Scattering. Plasmonics 9, 1371–1376 (2014). https://doi.org/10.1007/s11468-014-9751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9751-y

Keywords

Navigation