Skip to main content
Log in

Optical Properties of Silver-Coated Silicon Nanowires: Morphological and Plasmonic Excitations

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The optical extinction spectra of micro- and nanoparticles made up of high-contrast dielectrics exhibit a set of very intense peaks due to the excitations of morphology-dependent resonances (MDRs). These kind of resonances are well known at the microscopic scale as whispering gallery modes. In this work, we study numerically the optical spectra corresponding to a core–shell structure composed by an infinite silicon nanowire coated with a silver shell. This structure shows a combination of both excitations: MDRs and the well-known surface plasmon resonances in dielectric metallic core–shell nanoparticles (Ekeroth Abraham and Lester, Plasmon 2012). We compute in an exact form the complete electromagnetic response for both bare and coated silicon nanowires in the range of 24–200 nm of cross-sectional sizes. We take into account an experimental bulk dielectric function of crystalline silicon and silver by using a correction by size of the metal dielectric function. In this paper, we consider small silver shells in the range of 1–10 nm of thickness as coatings. We analyze the optical response in both the far and near fields, involving wavelengths in the extended range of 300–2,400 nm. We show that the MDRs excited at the core are selectively perturbated by the metallic shell through the bonding and antibonding surface plasmons (SPs). This perturbation depends on both the size of the core and the thickness of the shell, and, as a consequence, we get an efficient tuneable and detectable simple system. Our calculations apply perfectly to long nanotubes compared to the wavelength for the two fundamental polarizations (s, p).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ekeroth Abraham RM, Lester MF (2012) Plasmonics (7):579–587

  2. Matsko AB, Ilchenko VS (2006) IEEE J Sel Top Q Elect 12(1):3–14

    Article  CAS  Google Scholar 

  3. Gorodetsky ML, Fomin AE (2006) IEEE J Sel Top Q Elect 12(1):33–39

    Article  CAS  Google Scholar 

  4. Johnson BR (1993) J Opt Soc Am A 10:343–352

    Article  Google Scholar 

  5. Niitsoo O, Couzis A (2011) J Coll Interf Sci 354:887–890

    Article  CAS  Google Scholar 

  6. Tang S et al (2007) J Sol Stat Chem 180:2871–2876

    Article  CAS  Google Scholar 

  7. Amoruso S, Ausanio G et al (2004) App Phys Lett 84(22):4502–4504

    Article  CAS  Google Scholar 

  8. Zhu SL et al (2011) Surf Coat Tech 205:2985–2988

    Article  CAS  Google Scholar 

  9. Fojtik A et al (1993) Phys Chem 97:1493–1496

    CAS  Google Scholar 

  10. Chen H et al (2011) J Pow Sources 196:6657–6662

    Article  CAS  Google Scholar 

  11. Hu L, Chen G (2007) Nano Lett 7(11):3249–3252

    Article  CAS  Google Scholar 

  12. Mohapatra S et al (2008) App Phys Lett 92(103105):1–3

    Google Scholar 

  13. Krasavin AV, Zayats AV (2010) Opt Exp 18(11):11791–11799

    Article  CAS  Google Scholar 

  14. O’Farrell N, Houlton A, Horrocks BR (2006) Inter J Nanomed 1(4):451–472

    Article  Google Scholar 

  15. Meier C, Wiggers H et al (2007) J App Phys 101(103112):1–8

    Google Scholar 

  16. Lin N et al (2011) J Phys Chem C 115:3198–3202

    Article  CAS  Google Scholar 

  17. Zhuo S-J et al (2010) J App Phys 108(034305):1–4

    Google Scholar 

  18. Bardhan R et al (2010) AC Nano 4(10):6169–6179

    Article  CAS  Google Scholar 

  19. Idrobo JC (2009) Phys Rev B 79(125322):1–6

    Google Scholar 

  20. Miroshnichenko AE (2010) Phys Rev A 81(053818):1–5

    Google Scholar 

  21. Evlyukhin AB et al (2010) Phys Rev B 82(045404):1–12

    Google Scholar 

  22. Kumar V (2007) Nanosilicon. Elsevier, Amsterdam

  23. Wang LV, Wu H-I (2007) Biomedical optics: principles and imaging. Wiley, Hoboken

  24. Xu C et al (1996) Proc Natl Acad Sci USA (Biophysics) 93:10763–10768

    Article  CAS  Google Scholar 

  25. Ekeroth RMA, Lester M, Scaffardi LB, Schinca DC (2011) Plasm 6(3):435–444

    Article  CAS  Google Scholar 

  26. Palik ED (1998) Handbook of optical constants of solids II. Elsevier, Amsterdam

  27. Lester MF, Skigin DC (2007) J Opt A: Pure Appl Opt 9:81–87

    Article  Google Scholar 

  28. Shu WX, Ren Z, Luo HL, Li F (2007) Eur Phys J D 41:541–546

    Article  CAS  Google Scholar 

  29. Ma DDD et al (2011) Science 299:1874–1877

    Article  Google Scholar 

  30. Tsu R (1997) J App Phys 82(3):1327–1329

    Article  CAS  Google Scholar 

  31. Ren SY et al (1992) Phys Rev B 45(12):6492–6496

    Article  CAS  Google Scholar 

  32. van Buuren T et al (1998) Phys Rev Lett 80(17):3803–3806

    Article  CAS  Google Scholar 

  33. Schinca DC et al (2009) J Phys D Appl Phys 42(215102):1–9

    Google Scholar 

  34. Kreibig U (1974) J Phys F Metal Phys 4:999–1014

    Article  CAS  Google Scholar 

  35. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

  36. Wu D, Xu XD, Liu XJ (2008) Sol State Comm 146:7–11

    Article  CAS  Google Scholar 

  37. Prodan E, Nordlander P (2002) Chem Phys Lett 352:140

    Article  CAS  Google Scholar 

  38. Liu WF, Oh JI, Shen WZ (2011) Nanotechnology 22:125705

    Article  CAS  Google Scholar 

  39. Prodan E, Nordlander P (2004) J Chem Phys 120(11):5444–5454

    Article  CAS  Google Scholar 

  40. Moradi A (2008) J Phys Chem Sol 69:2936–2938

    Article  CAS  Google Scholar 

  41. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

  42. She H-Y, Li L-W, Martin OJF, Mosig JR (2008) Opt Lett 16(2):1007–1019

    Google Scholar 

  43. Scaffardi LB, Lester M, Skigin D, Tocho JO (2007) Nanotech 18(315402):1–8

    Google Scholar 

  44. Jain PK, El-Sayed MA (2007) Nano Lett 7(9):2854–2858

    Article  CAS  Google Scholar 

  45. Jain PK, El-Sayed MA (2008) J Phys Chem C 112:4954–4960

    Article  CAS  Google Scholar 

  46. Tseng H-C (2010) Opt Expr 18(17):18360–18367

    Article  Google Scholar 

  47. Stratton JA (2007) Electromagnetic theory. IEEE, New York

  48. Park T-H, Nordlander P (2009) Chem Phys Lett 472:228–231

    Article  CAS  Google Scholar 

  49. Korvink JG, Greiner A (2002) Semiconductors for Micro and Nanotechnology. Wiley, Weinheim

  50. Jellison Jr. GE, Modine FA (1994) J Appl Phys 76(6):3758–3761

    Article  CAS  Google Scholar 

  51. Nussenzveig HM (1992) Difraction effects in semiclassical scattering. Cambridge University Press, Cambridge

  52. Van de Hulst HC (1957) Light scattering: by small particles. Dover, New York

  53. Chu M-W (2009) Nano Lett 9(1):399–404

    Article  CAS  Google Scholar 

  54. Nordlander P et al (2004) Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  55. Solis D Jr, et al (2012) Nano Lett 12:1349–1353

    Article  CAS  Google Scholar 

  56. Noskov RE, Krasnok AE, Kivshar YS (2012) New J Phys 14(093005):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Abraham Ekeroth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekeroth, R.M.A., Lester, M. Optical Properties of Silver-Coated Silicon Nanowires: Morphological and Plasmonic Excitations. Plasmonics 8, 1417–1428 (2013). https://doi.org/10.1007/s11468-013-9555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9555-5

Keywords

Navigation