Skip to main content
Log in

Large Scale Fabrication of Gold Nano-Structured Substrates Via High Temperature Annealing and Their Direct Use for the LSPR Detection of Atrazine

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present work is reporting on the fabrication of localized surface plasmonic resonant (LSPR) gold nano-structures on glass substrate by using different high annealing temperatures (500 °C, 550 °C, 600 °C) of initially created semi-continue gold films (2 nm and 5 nm) by the electron beam evaporation technique. Interestingly, well-defined gold nano-structures were also obtained from continuous 8 nm evaporated gold film - known as the value above gold percolated thickness - once exposed to high temperatures. The surface morphology and plasmonic spectroscopy of “annealed” nano-structures were controlled by key experimental parameters such as evaporated film thickness and annealing temperature. By using scanning electron microscopy (SEM) characterization of annealed surface it was noticed that the size and inter-particle distance between nano-structures were highly dependent on the evaporated thin film thickness, while the nanoparticle shape evolution was mainly affected by the employed annealing temperature. Due to the well-controlled morphology of gold nano-particles, prominent and stable LSPR spectra were observed with good plasmon resonance tunability from 546 nm to 780 nm that recommend the developed protocol as a robust alternative to fabricate large scale LSPR surface. An example of a LSPR-immunosensor is reported. Thus, the monoclonal anti-atrazine antibodies immobilizion on the “annealed” gold nano-structures, as well as the specific antigen (atrazine) recognition were monitored as variations of the resonance wavelength shifts and optical density changes in the extinction measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, super molecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  2. Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322

    Article  CAS  Google Scholar 

  3. Schwerdtfeger P (2003) Gold goes nano—from small clusters to low-dimensional assemblies. Angew Chem Int Ed 42:1892–1895

    Article  CAS  Google Scholar 

  4. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  5. KimLing J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  Google Scholar 

  6. Hu JQ, Wang ZP, Li JH (2007) Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced Raman scattering, and the application in biodetection. Sensors 7:3299–3311

    Article  CAS  Google Scholar 

  7. Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  8. Grand J, Adam PM, Grimault AS, Vial A, Lamy de la Chapelle M, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1:135–140

    Article  CAS  Google Scholar 

  9. Grand J, Lamy de la Chapelle M, Bijeon JL, Adam PM, Vial A, Royer P (2005) Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72:033407

    Article  Google Scholar 

  10. Sobhan MA, Withford MJ, Goldys EM (2010) Enhanced stability of gold colloids produced by femtosecond laser synthesis in aqueous solution of CTAB. Langmuir 26:3156–3159

    Article  CAS  Google Scholar 

  11. Reed JA, Cook A, Halaas DJ, Parazzoli P, Robinson A, Matula TJ, Grieser F (2003) The effects of microgravity on nanoparticles size distributions generated by the ultrasonic reduction of an aqueous gold-chloride solution. Ultrason Sonochem 10:285–289

    Article  CAS  Google Scholar 

  12. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  13. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  14. Philip D (2009) Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A 73:650–653

    Article  Google Scholar 

  15. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biot 84:151–157

    Article  CAS  Google Scholar 

  16. Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  Google Scholar 

  17. Chen CF, Tzeng SD, Chen HY, Lin KJ, Gwo S (2008) Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling. J Am Chem Soc 130:824–826

    Article  CAS  Google Scholar 

  18. Zhao LL, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350

    Article  CAS  Google Scholar 

  19. Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C 112:13958–13963

    Article  CAS  Google Scholar 

  20. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  21. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  22. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  23. Viste P, Plain J, Jaffiol R, Vial A, Adam PM, Royer P (2010) Enhancement and quenching regimes in metal–semiconductor hybrid optical nanosources. ACS Nano 4:759–764

    Article  CAS  Google Scholar 

  24. Barbillon G, Bijeon JL, Bouillard JS, Plain J, Lamy de la Chapelle M, Adam PM, Royer P (2008) Detection in the near-field domain of biomolecules adsorbed on a single metallic nanoparticle. J Microsc 229:270–274

    Article  CAS  Google Scholar 

  25. EI-Sayed IH, Huang XH, EI-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  Google Scholar 

  26. Tong L, Cobley CM, Chen JY, Xia YN, Cheng JX (2010) Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew Chem Int Ed 49:3485–3488

    Article  CAS  Google Scholar 

  27. Huang XH, Jain PK, EI-Sayed IH, EI-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  Google Scholar 

  28. McMahon JM, Henry AI, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825

    Article  CAS  Google Scholar 

  29. Xia YN, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348

    Article  CAS  Google Scholar 

  30. Sagle LB, Ruvuna LK, Ruemmele JA, Van Duyne RP (2011) Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 6:1447–1462

    Article  CAS  Google Scholar 

  31. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuat B-Chem 54:3–15

    Article  Google Scholar 

  32. Bellapadrona G, Tesler AB, Grunstein D, Hossain LH, Kikkeri R, Seeberger PH, Vaskevich A, Rubinstein I (2012) Optimization of localized surface plasmon resonance transducers for studying carbohydrate-protein interactions. Anal Chem 84:232–240

    Article  CAS  Google Scholar 

  33. Kalyuzhny G, Vaskevich A, Schneeweiss MA, Rubinstein I (2002) Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films. Chem Eur J 8:3849–3857

    Article  CAS  Google Scholar 

  34. Lee SW, Lee KS, Ahn JY, Lee JJ, Kim MG, Shin YB (2011) Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5:897–904

    Article  CAS  Google Scholar 

  35. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 544–557

  36. Rindzevicius T, Alaverdyan Y, Dahlin A, Hook F, Sutherland DS, Kall M (2005) Plasmonic sensing characteristics of single nanometric holes. Nano Lett 5:2335–2339

    Article  CAS  Google Scholar 

  37. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  38. Doron-Mor I, Barkay Z, Filip-Granit N, Vaskevich A, Rubinstein I (2004) Ultrathin gold island films on silanized glass. morphology and optical properties. Chem Mater 16:3476–3483

    Article  CAS  Google Scholar 

  39. Piscopiello E, Tapfer L, Antisari MV, Paiano P, Prete P, Lovergine N (2008) Formation of epitaxial gold nanoislands on (100) silicon. Phys Rev B 78:035305

    Article  Google Scholar 

  40. Szunerits S, Praig VG, Manesse M, Boukherroub R (2008) Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19:195712

    Article  Google Scholar 

  41. Gluodenis M, Manley C, Foss CA (1999) In situ monitoring of the change in extinction of stabilized nanoscopic gold particles in contact with aqueous phenol solutions. Anal Chem 71:4554–4558

    Article  CAS  Google Scholar 

  42. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  43. Jian Y, Bonroy K, Nelis D, Frederix F, D’Haen J, Maes G, Borghs G (2008) Enhanced localized surface plasmon resonance sensing on three-dimensional gold nanoparticles assemblies. Colloids Surf A 321:313–317

    Article  Google Scholar 

  44. Ruach-Nir I, Bendikov TA, Doron-Mor I, Barkay Z, Vaskevich A, Rubinstein I (2007) Silica-stabilized gold island films for transmission localized surface plasmon sensing. J Am Chem Soc 129:84–92

    Article  CAS  Google Scholar 

  45. Karakouz T, Tesler AB, Bendikov TA, Vaskevich A, Rubinstein I (2008) Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass. Adv Mater 20:3893–3899

    Article  CAS  Google Scholar 

  46. Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I (2009) Morphology and refractive index sensitivity of gold island film. Chem Mater 21:5875–5885

    Article  CAS  Google Scholar 

  47. Karakouz T, Maoz BM, Lando G, Vaskevich A, Rubinstein I (2011) Stabilization of gold nanoparticle films on glass by thermal embedding. ACS Appl Mater Interfaces 3:978–987

    Article  CAS  Google Scholar 

  48. Tesler AB, Chuntonov L, Karakouz T, Bendikov T, Haran G, Vaskevich A, Rubinstein I (2011) Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films. J Phys Chem C 115:24642–24652

    Article  CAS  Google Scholar 

  49. Gao SY, Koshizaki N, Tokuhisa H, Koyama E, Sasaki T, Kim JK, Ryu J, Kim DS, Shimizu Y (2010) Highly stable Au nanoparticles with tunable spacing and their potential application in surface plasmon resonance biosensors. Adv Func Mater 20:78–86

    Article  CAS  Google Scholar 

  50. Yan CJ, Chen YC, Jin A, Wang M, Kong XD, Zhang XF, Ju Y, Han L (2011) Molecule oxygen-driven shaping of gold islands under thermal annealing. Appl Surf Sci 258:377–381

    Article  CAS  Google Scholar 

  51. Zhang XM, Zhang JH, Wang H, Hao YD, Zhang X, Wang TQ, Wang YN, Zhao R, Zhang H, Yang B (2010) Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity. Nanotechnology 21:465702

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Stratégique Program 2009–2012 from University of Technology of Troyes (UTT) and to the France-Israel bilateral Research Network Programme 2009–2011. The ANR program ANR-07-Nano-032 “NP/CL” is also acknowledged for supplement of the optical set-up. The authors thank François Weil (LASMIS-UTT team) for providing the thermal processing equipment, Wang Huan and Rafael Salas-Montiel (UTT) for the fruitful discussions about the plasmonic evolution of metal nano-structures and for their experimental assistance.

Kun Jia thanks the Chinese Scholarship Council for funding his PhD scholarship in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Elena Ionescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, K., Bijeon, JL., Adam, PM. et al. Large Scale Fabrication of Gold Nano-Structured Substrates Via High Temperature Annealing and Their Direct Use for the LSPR Detection of Atrazine. Plasmonics 8, 143–151 (2013). https://doi.org/10.1007/s11468-012-9444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9444-3

Keywords

Navigation