Skip to main content
Log in

Complex Polarization Response in Plasmonic Nanospirals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Archimedean nanospirals exhibit many far-field resonances that result from the lack of symmetry and strong intra-spiral plasmonic interactions. Here, we present a computational study, with corroborating experimental results, on the plasmonic response of the 4π Archimedean spiral as a function of incident polarization, for spirals in which the largest linear dimension is less than 550 nm. We discuss the modulation of the near-field structure for linearly and circularly polarized light in typical nanospiral configurations. Computational studies of the near-field distributions excited by circularly polarized light illustrate the effects of chirality on plasmonic mechanisms, while rotation of linearly polarized light provides a detailed view of the effects of broken symmetry on nanospiral fields in any given direction in the plane of the spiral. The rotational geometry exhibits a preference for circular polarization that increases near-field enhancement compared to excitation with linearly polarized light and exchanges near-field configurations and resonant modes. By analyzing the effects of polarization and wavelength on the near-field configurations, we also show how the nanospiral could be deployed in applications such as tunable near-field enhancement of nonlinear optical signals from chiral molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247

    Article  CAS  Google Scholar 

  2. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832

    Article  CAS  Google Scholar 

  3. Wang H, Wu YP, Lassiter B, Nehl CL, Hafner JH, Nordlander P, Halas NJ (2006) Symmetry breaking in individual plasmonic nanoparticles. P Natl Acad Sci USA 103(29):10856–10860

    Article  CAS  Google Scholar 

  4. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732

    Article  CAS  Google Scholar 

  5. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    Article  CAS  Google Scholar 

  6. Gopinath A, Boriskina SV, Feng NN, Reinhard BM, Dal Negro L (2008) Photonic-plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett 8(8):2423–2431

    Article  CAS  Google Scholar 

  7. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800

    Article  CAS  Google Scholar 

  8. Yu ET, Derkacs D, Lim SH, Matheu P, Schaadt DM (2008) Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proc SPIE 7033:70331V/1–70331V/9, Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  9. Chang CC, Sharma YD, Kim YS, Bur JA, Shenoi RV, Krishna S, Huang DH, Lin SY (2010) A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett 10(5):1704–1709

    Article  CAS  Google Scholar 

  10. Stoerzinger KA, Lin JY, Odom TW (2011) Nanoparticle SERS substrates with 3D Raman-active volumes. Chem Sci 2:1435–1439, Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved

    Article  CAS  Google Scholar 

  11. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745

    Article  Google Scholar 

  12. Alu A, Engheta N (2009) The quest for magnetic plasmons at optical frequencies. Opt Express 17(7):5723–5730

    Article  CAS  Google Scholar 

  13. Urzhumov YA, Shvets G, Fan J, Capasso F, Brandl D, Nordlander P (2007) Plasmonic nanoclusters: a path towards negative-index metafluids. Opt Express 15(21):14129–14145

    Article  Google Scholar 

  14. Brandl DW, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110(25):12302–12310

    Article  CAS  Google Scholar 

  15. Ziegler JI, Haglund RF Jr (2010) Plasmonic response of nanoscale spirals. Nano Lett 10:3013–3018, Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved

    Article  CAS  Google Scholar 

  16. Verellen N, Van Dorpe P, Vercruysse D, Vandenbosch GAE, Moshchalkov VV (2011) Dark and bright localized surface plasmons in nanocrosses. Opt Express 19(12):11034–11051

    Article  CAS  Google Scholar 

  17. Zou SL, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875

    Article  CAS  Google Scholar 

  18. Fedotov VA, Schwanecke AS, Zheludev NI, Khardikov VV, Prosvirnin SL (2007) Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett 7(7):1996–1999

    Article  CAS  Google Scholar 

  19. Chiang YL, ChenCW WCH, Hsieh CY, Chen YT, Shih HY, Chen YF (2010) Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite. Appl Phys Lett 96(4):041904

    Article  Google Scholar 

  20. Pryce IM, Aydin K, Kelaita YA, Briggs RM, Atwater HA (2010) Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett 10(10):4222–4227

    Article  CAS  Google Scholar 

  21. Smitha SL, Gopchandran KG, Ravindran TR, Prasad VS (2011) Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 22(26):265705

    Article  CAS  Google Scholar 

  22. Motl NE, Ewusi-Annan E, Sines IT, Jensen L, Schaak RE (2010) Au-Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory. J Phys Chem C 114(45):19263–19269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Office of Science, U.S. Department of Energy (DE-FG02-01ER45916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed I. Ziegler.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, J.I., Haglund, R.F. Complex Polarization Response in Plasmonic Nanospirals. Plasmonics 8, 571–579 (2013). https://doi.org/10.1007/s11468-012-9436-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9436-3

Keywords

Navigation