Skip to main content
Log in

Refractometric Sensing with Silicon Quantum Dots Coupled to a Microsphere

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) coupled to an optical microsphere can be used as fluorescent refractometric sensors. The QD emission couples to the whispering gallery resonances of the microsphere, leading to sharp, periodic maxima in the fluorescence spectrum. Silicon QDs (Si-QDs) are especially attractive fluorophores because of their low toxicity and ease of handling. In this work, a thin layer of Si-QDs was coated onto the surface of a microsphere made by melting the end of a tapered optical fiber. Refractometric sensing experiments were conducted using two methods. First, the sphere was immersed directly into a cuvette containing methanol–water mixtures. Second, the sphere was inserted into a silica capillary and the solutions were pumped through the capillary channel. The latter method enables microfluidic operation, which is otherwise difficult to achieve with a microsphere. In both geometries, high-visibility (V = 0.83) modes were observed with Q factors up to 1,700. Using standard signal processing methods applied to the whispering gallery mode (WGM) spectrum, sensorgram-type measurements were conducted using single Si-QD-coated microspheres. The WGM resonances shifted as a function of the refractive index of the analyte solution, giving sensitivities ranging from ~30 to 100 nm/refractive index unit (RIU) for different microspheres and a detection limit on the order of 10−4 RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See for example http://www.biacore.com/lifesciences/index.html

References

  1. Lambeck PV (2006) Integrated optical sensors for the chemical domain. Meas Sci Technol 17:R93–R116

    Article  CAS  Google Scholar 

  2. Herold KE, Rasooly A (2009) Lab-on-a-chip technology (vol. 1): fabrication and microfluidics. Caister Academic Press, Norfolk

    Google Scholar 

  3. Daghestani HN, Day BW (2010) Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 10(11):9630–9646

    Article  CAS  Google Scholar 

  4. Soria S, Berneschi S, Brenci M, Cosi F, Nunzi Conti G, Pelli S, Righini GC (2011) Optical microspherical resonators for biomedical sensing. Sensors 11(1):785–805

    Article  CAS  Google Scholar 

  5. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5(7):591–596

    Article  CAS  Google Scholar 

  6. Yang J, Guo LJ (2006) Optical sensors based on active microcavities. IEEE J Sel Top Quant Electron 12(1):143–147

    Article  CAS  Google Scholar 

  7. Brockman JM, Nelson BP, Corn RM (2000) Annu Rev Phys Chem 51(1):41–63

    Article  CAS  Google Scholar 

  8. Weller A, Liu FC, Dahint R, Himmelhaus M (2008) Whispering gallery mode biosensors in the low-Q limit. Appl Phys B: Lasers and Optics 90(3–4):561–567

    CAS  Google Scholar 

  9. Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett 88(23):233116

    Article  Google Scholar 

  10. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44(29):4550–4554

    Article  CAS  Google Scholar 

  11. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653

    Article  CAS  Google Scholar 

  12. Tsoi S, Fok E, Sit JC, Veinot JGC (2004) Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization. Langmuir 20(24):10771–10774

    Article  CAS  Google Scholar 

  13. Hessel CM, Summers MA, Meldrum A, Malac M, Veinot JGC (2007) Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane. Adv Mater 19(21):3513–3516

    Article  CAS  Google Scholar 

  14. Bianucci P, Rodríguez JR, Lenz FC, Veinot JGC, Meldrum A (2009) Mode structure in the luminescence of Si-nc in cylindrical microcavities. Physica E 41(6):1107–1110

    Article  CAS  Google Scholar 

  15. Teraoka I, Arnold S (2007) Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching. J Opt Soc Am B 24(3):653–659

    Article  CAS  Google Scholar 

  16. Teraoka I, Arnold S (2006) Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer. J Opt Soc Am B 23(7):1434–1441

    Article  CAS  Google Scholar 

  17. Boriskin AV, Boriskina SV, Rolland A, Sauleau R, Nosich AI (2008) Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. J Opt Soc Am A 25(5):1169–1173

    Article  Google Scholar 

  18. Manchee CPK, Zamora V, Silverstone JW, Veinot JGC, Meldrum A (2011) Refractometric sensing with fluorescent-core microcapillaries. Opt Express 19(22):21540–21551

    Article  CAS  Google Scholar 

  19. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028

    Article  Google Scholar 

  20. Silverstone JW, McFarlane S, Manchee CPK, Meldrum A (2012) Ultimate resolution for refractometric sensing with whispering gallery mode microcavities. Opt Express 20(8):8284–8295

    Article  CAS  Google Scholar 

  21. Francois A, Himmelhaus M (2008) Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl Phys Lett 92(14):141107

    Article  Google Scholar 

  22. Charlebois M, Paquet A, Verret LS, Boissinot K, Boissinot M, Bergeron MG, Allen CN (2010) Toward automatic label-free whispering gallery modes biodetection with a quantum dot-coated microsphere population. Nano Res Lett 5(3):524–532

    Article  CAS  Google Scholar 

  23. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astro Space Sci 39:447–462

    Article  Google Scholar 

  24. Mandel M, Asif A (2007) Continuous and discrete time signals and systems. Cambridge University Press, Cambridge

    Google Scholar 

  25. Scott RPW (2000) The thermodynamic properties of methanol–water association and its effect on solute retention in liquid chromatography. Analyst 125:1543–1547

    Article  CAS  Google Scholar 

  26. Lide DR (ed) (2005) The CRC handbook of chemistry and physics. CRC Press, New York

    Google Scholar 

  27. El-Kashef H (2000) The necessary requirements imposed on polar dielectric laser dye solvents. Physica B 279(4):295–301

    Article  CAS  Google Scholar 

  28. Daimon M, Masumura A (2007) Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl Opt 46(18):3811–3820

    Article  Google Scholar 

  29. Herráez JV, Belda R (2006) Refractive indices, densities and excess molar volumes of monoalcohols + water. J Solution Chem 35(9):1315–1328

    Article  Google Scholar 

  30. Hao L, Leaist DG (1996) Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol. J Chem Eng Data 41(2):210–213

    Article  CAS  Google Scholar 

  31. McFarlane S, Manchee CPK, Silverstone JW, Veinot JGC, Meldrum A (2010) Development of fluorescent-core microcavity biosensors. Sensor Letters (EMRS-2012 symposium Q, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, Y., Manchee, C.P.K., Silverstone, J.W. et al. Refractometric Sensing with Silicon Quantum Dots Coupled to a Microsphere. Plasmonics 8, 71–78 (2013). https://doi.org/10.1007/s11468-012-9423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9423-8

Keywords

Navigation