Skip to main content
Log in

Blue-Shifted SPR of Au Nanoparticles with Ordering of Carbon by Dense Ionization and Thermal Treatment

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Thin films of carbon-containing Au nanoparticles (NPs), prepared by the co-sputtering using a neutral Ar atom beam, were irradiated by 120 MeV Ag ions and also annealed, separately, at increasing temperatures in inert atmosphere. The surface plasmon resonance (SPR) band of the nanocomposite film was observed to be blue shifted (∼50 nm) in both cases, with increasing fluence and temperature. The structural changes of Au NPs embedded in amorphous carbon matrix were investigated using X-ray diffraction and transmission electron microscopy. A growth of Au NPs was observed with increasing fluence and also with increasing temperature. A percolation of Au NPs was observed at 500 °C. A growth of Au NPs with ion irradiation is explained in the framework of a thermal spike model. Raman spectroscopy revealed the ordering of a-C thin films with increasing fluence and temperature, which is ascribed to a change of refractive index and the blue shift of the SPR band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Korchev S, Bozack MJ, Slaten BL, Mills G (2004) Polymer-initiated photogeneration of silver nanoparticles in SPEEK/PVA films: direct metal photopatterning. J Am Chem Soc 126(1):10–11

    Article  CAS  Google Scholar 

  2. Inouye H, Tanaka K, Tanahashi I, Hattori T, Kanatsuka H (2000) Ultrafast optical switching in a silver nanoparticle system. Jpn J Appl Phys 39:5132–5133

    Article  CAS  Google Scholar 

  3. Dirix Y, Bastiaansen C, Caseri W, Smith P (1999) Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route to polarization dependent color filters. Adv Mater 11:223–227

    Article  CAS  Google Scholar 

  4. Avasthi DK, Mishra YK, Kabiraj D, Lalla NP, Pivin JC (2007) Synthesis of metal-polymer nanocomposite for optical applications. Nanotechnology 18(12):125604–125607

    Article  Google Scholar 

  5. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, pp 20–23, Springer Series in Materials Science 25

    Book  Google Scholar 

  6. Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14(1):13–22

    Article  CAS  Google Scholar 

  7. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13(19):1501–1505

    Article  CAS  Google Scholar 

  8. Bhuvana T, Kumar GVP, Narayana C, Kukkarni GU (2007) Nanogranular Au films deposited on carbon covered Si substrates for enhanced optical reflectivity and Raman scattering. Nanotechnology 18(14):145702

    Article  Google Scholar 

  9. Ohtsu M, Kobayashi K, Kawazoe T, Sangu S, Yatsui T (2002) Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quant Electron 8:839–862

    Article  CAS  Google Scholar 

  10. Garcia-Serrano J, Pal U (2003) Synthesis and characterization of Au nanoparticles in Al2O3 matrix. Int J Hydrogen Energ 28(6):637–640

    Article  CAS  Google Scholar 

  11. Mishra YK, Mohapatra S, Kabiraj D, Mohanta B, Lalla NP, Pivin JC et al (2007) Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scr Mater 56(7):629–632

    Article  CAS  Google Scholar 

  12. Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Verma S (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105–103107

    Article  Google Scholar 

  13. Tang S, Zhu S, Lu H, Meng X (2008) Shape evolution and thermal stability of Ag nanoparticles on spherical SiO2 substrates. J Solid State Chem 181(3):587–592

    Article  CAS  Google Scholar 

  14. Hillenkamp M, Domenicantonio GD, Eugster O, Felix C (2007) Instability of Ag nanoparticles in SiO2 at ambient conditions. Nanotechnology 18:015702–015705

    Article  Google Scholar 

  15. Mcmahon MD, Lopez R, Meyer V, Feldman LC, Haglund RF Jr (2005) Rapid tarnishing of silver nanoparticles in ambient laboratory air. Appl Phys B Lasers Opt 80:915–921

    Article  CAS  Google Scholar 

  16. Robertson J (1992) Mechanical properties and coordinations of amorphous carbons. Phys Rev Lett 68:220–223

    Article  CAS  Google Scholar 

  17. Morrison ML, Buchanan RA, Liaw PK, Berry CJ, Brigmon RL, Reister L et al (2006) Electrochemical and antimicrobial properties of diamondlike carbon-metal nanocomposite films. Diam Relat Mater 15:138–146

    Article  CAS  Google Scholar 

  18. Babonneau D, Cabico’h T, Naudon A, Girard JC, Deanot MF (1998) Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surf Sci 409:358–371

    Article  CAS  Google Scholar 

  19. Narayan RJ (2005) Pulsed laser deposition of functionally gradient diamondlike carbon–metal nanocomposites. Diam Relat Mater 14:1319–1330

    Article  CAS  Google Scholar 

  20. Okamoto A, Suzuki Y, Yoshitake M, Ogawa S, Nakano N (1997) Gold-carbon nanocomposite thin films for electrochemical gas sensor prepared by reactive plasma sputtering. Nucl Instr Meth Phys Res B 21:179–183

    Article  Google Scholar 

  21. Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957

    Article  CAS  Google Scholar 

  22. Wagner J, Ramsteiner M, Wild C, Koidl P (1989) Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys Rev B 40:1817–1824

    Article  CAS  Google Scholar 

  23. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  24. Ferrai AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  Google Scholar 

  25. Robertson J (1994) Diamond-like carbon. Pure Appl Chem 66(9):1789–1796

    Article  CAS  Google Scholar 

  26. Angus JC, Hayman CC (1988) Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241:913–921

    Article  CAS  Google Scholar 

  27. Kabiraj D, Abhilash SR, Lionel V, Cinausero N, Pivin JC, Avashti DK (2006) Atom beam sputtering setup for growth of metal particles in silica. Nucl Instr Meth Phys Res B 244:100–104

    Article  CAS  Google Scholar 

  28. Zeigler JF, Biersack JP, Littmark V (1985) The stopping and range of ions in solids. In: The Stopping and Range of Ions in Matter, vol. 1. Pergamon, New York

    Google Scholar 

  29. Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instr Meth Phys Res B 9:344–351

    Article  Google Scholar 

  30. Pastsalas P, Logothetidis S (2001) Crystallization effects and diamond formation in amorphous carbon films under low energy ion beam irradiation. Nucl Instr Meth Phys Res B 178:247–251

    Article  Google Scholar 

  31. Kim SS, Hishita S, Cho TS, Je JH (2000) Graphitization of ultrathin amorphous carbon films on Si(001) by Ar+ ion irradiation at ambient temperature. J Appl Phys 88:55–58

    Article  CAS  Google Scholar 

  32. Prawer S, Kalish R, Adel M, Richter V (1987) Effects of heavy ion irradiation on amorphous hydrogenated (diamondlike) carbon films. J Appl Phys 61:4492–4500

    Article  CAS  Google Scholar 

  33. Ray SC, Kumar KPK, Tsai HM, Chiou JW, Pao CW, Pong WF et al (2008) Studies of ion irradiation effects in hydrogenated amorphous carbon thin films by X-ray absorption and photoemission spectroscopy. Thin Solid Films 516:3374–3377

    Article  CAS  Google Scholar 

  34. Grigonis A, Medvid A, Onufrijevs P, Babonas J, Reza A (2008) Graphitization of amorphous diamond-like carbon films by laser irradiation. Opt Mater 30:749–752

    Article  CAS  Google Scholar 

  35. Liang S, Yajima A, Abe S, Mera Y, Maeda K (2005) Evolution kinetics of sp2 ordering in tetrahedral amorphous carbon films induced by electron irradiation. Surf Sci 593:161–167

    Article  CAS  Google Scholar 

  36. Zhang Q, Yoon SF, Rusli JA, Yang H, Yang C, Watt FT et al (1999) Effects of high energetic He+ ion irradiation on the structure of polymeric hydrogenated amorphous carbon. Microelectron J 30:801–805

    Article  CAS  Google Scholar 

  37. Mishra S, Inagle A, Ghosh S, Avasthi DK (2005) Swift heavy ion (150 MeV:Ag13 +) induced structural changes in a-C:H films studied by Raman spectroscopy. Diam Relat Mater 14:1416–1425

    Article  CAS  Google Scholar 

  38. McCulloch DG, Mckenzie DR, Prawer S, Merchant AR, Gerstner EG, Kalish R (1997) Ion beam modification of tetrahedral amorphous carbon: the effect of irradiation temperature. Diam Relat Mater 6:1622–1628

    Article  CAS  Google Scholar 

  39. Baptista DL, Zawislak FC (2004) Hard and sp2-rich amorphous carbon structure formed by ion beam irradiation of fullerene, a-C and polymeric a-C:H films. Diam Relat Mater 13:1791–1801

    Article  CAS  Google Scholar 

  40. Chhowalla M, Farrari AC, Robertson J, Amaratunga GAJ (2000) Evolution of sp 2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl Phys Lett 76:1419–1421

    Article  CAS  Google Scholar 

  41. Pan H, Pruski M, Gerstein BC, Li F, Lannin JS (1991) Local coordination of carbon atoms in amorphous carbon. Phys Rev B 44:6741–6745

    Article  CAS  Google Scholar 

  42. Li F, Lannin JS (1990) Radial distribution function of amorphous carbon. Phys Rev Lett 65:1905–1908

    Article  CAS  Google Scholar 

  43. Cuomo JJ, Pappas DL, Bruley J, Doyle JP, Saenger K (1991) Vapor deposition processes for amorphous carbon films with sp 3 fractions approaching diamond. J Appl Phys 70:1706–1711

    Article  CAS  Google Scholar 

  44. Mckenzie DR, Green DC, Swift PD, Cockayne DJH, Martin PJ, Netterfield RP et al (1990) Electron optical techniques for microstructural and compositional analysis of thin films. Thin Solid Films 193:418–430

    Article  Google Scholar 

  45. Gaskell PH, Saeek A, Chieux P, Mckenzie DR (1991) Neutron-scattering studies of the structure of highly tetrahedral amorphous diamondlike carbon. Phys Rev Lett 67:1286–1289

    Article  CAS  Google Scholar 

  46. Dischler B, Bubenzer A, Koidl P (1983) Hard carbon coatings with low optical absorption. Appl Phys Lett 42:636–638

    Article  CAS  Google Scholar 

  47. Mckenzie DR, Botten LC, Mcphedran RC (1983) Electron-diffraction evidence for threefold coordination in amorphous hydrogenated carbon films. Phys Rev Lett 51:280–283

    Article  CAS  Google Scholar 

  48. Wada N, Gaczi PJ, Solin A (1980) “Diamond-like” 3-fold coordinated amorphous carbon. J Non-Cryst Solids 35–36:543–548

    Article  Google Scholar 

  49. Salis SR, Gardiner DJ, Bowden M, Savage J, Rodway D (1996) Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm. Diamond and Related Mater 5:589–591

    Article  Google Scholar 

  50. Lin-Vien D, Colthurp NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, New York

    Google Scholar 

  51. Waiblinger M, Sommerhalter Ch, Pietzak B, Krauser J, Mertesacker B, Lux-Steiner MC et al (1999) Electrically conducting ion tracks in diamond-like carbon films for field emission. Appl Phys A Mater Sci Process 69:239–240

    Article  CAS  Google Scholar 

  52. Sorkin A, Adler J, Kalish R (2004) Computer simulations of damage due to passage of a heavy fast ion through diamond. Phys Rev B 70:064110–064120

    Article  Google Scholar 

  53. Mapelli C, Castiglioni C, Zerbi G, Mullen K (1999) Common force field for graphite and polycyclic aromatic hydrocarbons. Phys Rev B 60:12710–12725

    Article  CAS  Google Scholar 

  54. Srivastava SK, Avasthi DK, Pippel E (2006) Swift heavy ion induced formation of nanocolumns of C clusters in a Si based polymer. Nanotechnology 17:2518–2522

    Article  CAS  Google Scholar 

  55. Srivastava SK, Avasthi DK, Assmann W, Wang ZG, Kucal H, Jacquert E et al (2005) Test of the hypothesis of transient molten state diffusion for swift-heavy-ion induced mixing. Phys Rev B 71:193405–193408

    Article  Google Scholar 

  56. Avasthi DK, Ghosh S, Srivastava SK, Assmann W (2004) Existence of transient temperature spike induced by SHI: evidence by ion beam analysis. Nucl Instr Meth Phys Res B 219:206–214

    Article  Google Scholar 

  57. Mishra YK, Avasthi DK, Kulriya PK, Singh F, Kabiraj D, Tripathi A et al (2007) Controlled growth of gold nanoparticles induced by ion irradiation: An in situ x-ray diffraction study. Appl Phys Lett 90:073110–073112

    Article  Google Scholar 

  58. Pawlak F, Dufour C, Laurent A, Paumier E, Perrière J, Stoquert JP et al (1999) Carbon sputtering of polymer-like amorphous carbon by swift heavy ions. Nucl Instr Meth Phys Res B 151:140–145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, R., Kabiraj, D., Kulriya, P.K. et al. Blue-Shifted SPR of Au Nanoparticles with Ordering of Carbon by Dense Ionization and Thermal Treatment. Plasmonics 8, 295–305 (2013). https://doi.org/10.1007/s11468-012-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9389-6

Keywords

Navigation