Skip to main content
Log in

Remote-Excitation Time-Dependent Surface Catalysis Reaction Using Plasmonic Waveguide on Sites of Single-Crystalline Crossed Nanowires

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The remote-excitation polarization-dependent surface enhanced Raman scattering (SERS) induced by plasmonic waveguide is used to investigate the surface catalysis reaction of 4-nitrobenzenethiol converting to p,p′-dimercaptoazobenzene. The propagating surface plasmon polaritons along single-crystalline nanowires can be coupled by the crossed nanowire as nanoantenna for generating massive electromagnetic field enhancement in the nanogap. The remote-excitation SERS spectra in the nanogap reveal the occurrence of a surface catalysis reaction. The time-dependent remote-excitation SERS spectra further confirmed such surface catalysis reaction. This novel sensitive technology could lead to miniaturized photonics and realize high-resolution microscopy/spectroscopy used in the field of remote catalysis reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  2. Metiu H, Dos P (1984) Annu Rev Phys Chem 35:507

    Article  CAS  Google Scholar 

  3. Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Anal Chem 71:4903

    Article  CAS  Google Scholar 

  4. Kim NH, Lee SJ, Kim K (2003) Chem Commun 9:724

    Article  Google Scholar 

  5. Cao P, Gu R, Tian ZQ (2002) Langmuir 18:7609

    Article  CAS  Google Scholar 

  6. Chu W, LeBlanc RJ, Williams CT, Kubota J, Zaera F (2003) J Phys Chem B 107:14365

    Article  CAS  Google Scholar 

  7. Tian ZQ, Ren B, Wu DY (2002) J Phys Chem B 106:9463

    Article  CAS  Google Scholar 

  8. Sun MT, Xu HX (2012) Small. doi:10.1002/smll.201200572

  9. Kang T, Yoon I, Jeon K, Choi W, Lee Y, Seo K, Yoo Y, Park Q, Ihee H, Suh Y, Kim B (2009) J Phys Chem C 113:7492

    Article  CAS  Google Scholar 

  10. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Nature 464:392

    Article  CAS  Google Scholar 

  11. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101

    Article  Google Scholar 

  12. Liu R, Liu J, Zhou X, Sun MT, Jiang G (2011) Anal Chem 83:9131

    Article  CAS  Google Scholar 

  13. Sun MT, Hou YX, Xu HX (2011) Nanoscale 3:4114

    Article  CAS  Google Scholar 

  14. Huang Y, Fang Y, Sun MT (2011) J Phys Chem C 115:558

    Google Scholar 

  15. Dong B, Zhang W, Li ZP, Sun MT (2011) Plamonics 6:189

    Article  CAS  Google Scholar 

  16. Sun MT, Hou YX, Li ZP, Liu LW, Xu HX (2011) Plasmonics 6:681

    Article  CAS  Google Scholar 

  17. Mohanty P, Yoon I, Kang T, Seo K, Varadwaj KSK, Choi W, Park QH, Ahn JP, Suh YD, Ihee H, Kim B (2007) J Am Chem Soc 129:9576

    Article  CAS  Google Scholar 

  18. Dong B, Huang Y, Yu N, Fang Y, Cao B, Xu YH, Sun MT (2000) Chem Asian J 5:1824

    Article  Google Scholar 

  19. Dong B, Li ZA, Cao B, Yu N, Sun M (2011) Optics Communications 284:2528

    Article  CAS  Google Scholar 

  20. Kunz KS, Luebber RJ (1993) The finite difference time domain method for electromagnetics. CRC, Cleveland

    Google Scholar 

  21. Lumerical Solutions, Inc. (2011) FDTD solutions, version 7.5; Lumerical Solutions, Inc. Vancounver, British Columbia, Canada

  22. Palik ED (1985) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  23. Sun Y, Xia YN (2002) Adv Mater 14:833

    Article  CAS  Google Scholar 

  24. Dong B, Fang Y, Xia L, Xu H, Sun MT (2011) J Raman Spectrosc 42:1205

    Article  CAS  Google Scholar 

  25. Dong B, Fang Y, Chen X, Xu HX, Sun MT (2011) Langmuir 27:10677

    Article  CAS  Google Scholar 

  26. Fang YR, Li YZ, Xu HX, Sun MT (2010) Langmuir 26:7737

    Article  CAS  Google Scholar 

  27. Huang YZ, Fang YR, Yang ZL, Sun MT (2010) J Phys Chem C 114:18263

    Article  CAS  Google Scholar 

  28. Sun MT, Huang YZ, Xia LX, Chen XW, Xu HX (2011) J Phys Chem C 115:9629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 90923003, 10874234, and 20703064) and the National Basic Research Project of China (grant no. 2009CB930701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanzuo Li or Mengtao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, P., Li, Y., Li, Y. et al. Remote-Excitation Time-Dependent Surface Catalysis Reaction Using Plasmonic Waveguide on Sites of Single-Crystalline Crossed Nanowires. Plasmonics 8, 249–254 (2013). https://doi.org/10.1007/s11468-012-9382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9382-0

Keywords

Navigation