Skip to main content
Log in

Laser-Driven Precipitation and Modification of Silver Nanoparticles in Soda Lime Glass Matrix Monitored by On-line Extinction Measurements

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we investigated the effect of nanosecond laser irradiation at 532 nm on precipitation of Ag nanoparticles (NPs) in soda lime glasses doped with silver in the Ag + –Na +  ion-exchange process. Formation and subsequent modification of Ag NPs during laser irradiation were studied by on-line extinction measurements making use of the localized surface plasmon resonance (LSPR). These investigations were further completed using scanning and transmission electron microscopies to examine the average size and distribution of nanoparticles within the sample. It has been shown that formation of NPs, its kinetics and the particle size strongly depend on the fluence and the total number of deposited laser pulses. It has been found that Ag NPs form after some specific number of pulses and they rapidly grow in size and number until some maximal value of extinction has been reached. Further irradiation of such samples only results in destruction of precipitated NPs due to photo-breakup, laser ablation confirmed by strong plasma emission observation. Moreover, due to strong irradiation, the host matrix can also be affected by changing its refractive index which manifests as the blue shift of the LSPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vollath D (2008) Nanomaterials: an introduction to synthesis, properties and applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  3. De Marchi G, Caccavale F, Gonella F, Mattei G, Mazzoldi P, Battaglin G, Quaranta A (1996) Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere. Appl Phys A 63:403–407

    Article  Google Scholar 

  4. Salerno JR, Krenn B, Lamprecht G, Schider H, Ditlbacher N, Felidj A, Leitner, Aussenegg F (2002) Plasmon polaritons in metal nanostructures: the opto-electronic route to nanotechnology. Opto-Electron Rev 10:217–224

    Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  6. Qiu J, Shirai M, Nakaya T, Si J, Jiang X, Zhu C, Hirao K (2002) Space-selective precipitation of metal nanoparticles inside glasses. Appl Phys Lett 81:3040–3042

    Article  CAS  Google Scholar 

  7. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395

    Article  CAS  Google Scholar 

  8. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transfer 111:1–35

    Article  CAS  Google Scholar 

  9. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  10. Puche-Roig A, Martin V, Murcia-Muscarós S, Puchades R (2008) Float glass colouring by ion exchange. J Cult Herit 9:129–133

    Article  Google Scholar 

  11. Mazzoldi P, Sada C (2008) A trip in the history and evolution of ion-exchange process. Mater Sci Eng B 149:112–117

    Article  CAS  Google Scholar 

  12. Vostokov AV, Verzin IA, Ignat’ev AI, Podsvirov OA, Sidorov AI (2010) Comparison of the formation kinetics of silver nanoparticles of photo-thermo-refractive glass after ultraviolet and electron irradiation. Opt Spectrosc 109:366–371

    Article  CAS  Google Scholar 

  13. Yang X, Li W, Li Z, Wei Y, Huang W (2008) Depth profiles of Ag nanoparticles in silicate glass. Appl Phys A 90:465–467

    Article  CAS  Google Scholar 

  14. Blondeau JPh, Catan F, Andreazza-Vignolle C, Sbai N (2008) Plasmon resonance and clustering of silver nanoclusters embedded in glass. Plasmonics 3:65–71

    Article  CAS  Google Scholar 

  15. Trave E, Gonella F, Calvelli P, Cattaruzza E, Canton P, Cristofori D, Quaranta A, Pellegrini G (2010) Laser beam irradiation of silver doped silicate glasses. Nucl Instrum Methods Phys Res B 268:3177–3182

    Article  CAS  Google Scholar 

  16. Stepanov AL, Valeev VF, Nuzhidin VI, Bazarov VV, Faizrakhamov IA (2009) Excimer laser-assisted annealing of silicate glass with ion-synthesized silver nanoparticles. Tech Phys 54:1504–1510

    Article  CAS  Google Scholar 

  17. Varma RS, Kothari DC, Tewari R (2009) Nano-composite soda lime silicate glass prepared using silver ion exchange. J Non-Cryst Solids 355:1246–1251

    Article  CAS  Google Scholar 

  18. Nacharov AP, Nikonorov NV, Jiang X, Sidorov AI, Tsekhomskii VA (2008) Influence of ultraviolet irradiation and heat treatment on the morphology of silver nanoparticles in photothermorefractive glasses. Glass Phys Chem 34:693–699

    Article  CAS  Google Scholar 

  19. Battie Y, Destouches N, Bois L, Chassagneux F, Tishchenko A, Parola S, Boukenter A (2010) Growth mechanisms and kinetics of photoinduced silver nanoparticles in mesostructured hybrid silica films under UV and visible illumination. J Phys Chem C 114:8679–8687

    Article  CAS  Google Scholar 

  20. Zhang J, Dong W, Sheng J, Zheng J, Li J, Qiao L, Jiang L (2008) Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation. J Cryst Growth 310:234–239

    Article  CAS  Google Scholar 

  21. Zeng H, Zhao C, Qiu J, Yang Y, Chen G (2007) Preparation and optical properties of silver nanoparticles induced by a femtosecond laser irradiation. J Cryst Growth 300:519–522

    Article  CAS  Google Scholar 

  22. Kadono K, Itakura N, Akai T, Yamashita M, Yazawa T (2010) Formation of color centers in a soda-lime silicate glass by excimer laser irradiation. J Phys Condens Matter 22:045901 (7 pp)

    Google Scholar 

  23. Zeng H, Qiu J, Jiang X, Qu S, Zhu C, Gan F (2003) Influence of femtosecond laser irradiation and heat treatment on precipitation of silver nanoparticles in glass. Chin Phys Lett 20:932–934

    Article  Google Scholar 

  24. Zeng H, Qiu J, Jiang X, Zhu C, Gan F (2004) The effect of femtosecond laser irradiation conditions on precipitation of silver nanoparticles in silicate glasses. J Phys Condens Matter 16:2901–2906

    Article  CAS  Google Scholar 

  25. Kanehira S, Miura K, Hirao K (2008) Ion exchange in glass using femtosecond laser irradiation. J Cryst Growth 93:023112 (3 pp)

    Google Scholar 

  26. Blondeau J-P, Pellerin S, Vial V, Dzierżęga K, Pellerin N, Andreazza-Vignolle C (2008) Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass. J Cryst Growth 311:172–184

    Article  CAS  Google Scholar 

  27. De Marchi G, Mattei G, Mazzoldi P, Sada C (2002) Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere. J Appl Phys 92:4249–4254

    Article  Google Scholar 

  28. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface dumping. Phys Rev B 48:18178–18188

    Article  Google Scholar 

  29. Véron O, Blondeau J-P, Abdelkrim N, Ntsoenzok E (2010) Structural changes of Ag + –Na +  annealed ion-exchanged silicate glasses scanning electron microscopy, far-infrared reflectivity, UV–visible absorption, and TEM investigation. Plasmonics 5:213–219

    Article  Google Scholar 

  30. Shaaban MH, Mahmoud KR, Sharshar T, Ahmed AA (2007) Positron annihilation lifetime study of Ag-ion exchanged and heat treated soda lime glass. Nucl Instrum Methods Phys Res B 258:352–356

    Article  CAS  Google Scholar 

  31. Stalmashonak A, Podlipensky A, Seifert G, Graener H (2009) Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses. Appl Phys B 94:459–465

    Article  CAS  Google Scholar 

  32. Cabalin LM, Laserna JJ (1998) Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim Acta Part B 53:723–730

    Article  Google Scholar 

  33. Nagayama K, Kotsuka Y, Kajiwara T, Nishiyama T, Kubota S, Nakahara M (2007) Pulse laser ablation of ground glass. Shock Waves 17:171–183

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Nadège Ollier and Mohamed Chérif Sow from Jean Monnet University in Saint-Etienne for their profilometric measurements. The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovative Economy Operational Program (contract no. POIG.02.01.00-12-023/08). This work was also supported by the APR ContVerColl of the Région Centre (France) and by the Polish Ministry of Science and Higher Education grant NN202 031136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Grabiec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabiec, M., Wolak, A., Véron, O. et al. Laser-Driven Precipitation and Modification of Silver Nanoparticles in Soda Lime Glass Matrix Monitored by On-line Extinction Measurements. Plasmonics 7, 279–286 (2012). https://doi.org/10.1007/s11468-011-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9304-6

Keywords

Navigation