Skip to main content
Log in

Short-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We provide both experimental and theoretical investigation on extraordinary low transmission through one-dimensional nanoslit and two-dimensional nanohole arrays on ultra-thin metal films. Unambiguous proofs demonstrate that short-range surface plasmon polaritons play a key role leading to this novel phenomenon, which could be useful for creating new polarization filters and other integrated plasmonic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667 (London)

    Article  CAS  Google Scholar 

  2. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39 (London)

    Article  CAS  Google Scholar 

  3. Garcia de Abajo FJ (2007) Light scattering by particle and hole arrays. Rev Mod Phys 79:1267

    Article  CAS  Google Scholar 

  4. Weiner J (2009) The physics of light transmission through subwavelength apertures and aperture arrays. Rep Prog Phys 72:064401

    Article  Google Scholar 

  5. Lalanne P, Hugonin JP, Liu HT, Wang B (2009) A microscopic view of the electromagnetic properties of sub-λ metallic surfaces. Surf Sci Rep 64:453

    Article  CAS  Google Scholar 

  6. Garcia-Vidal FJ, Martin-Moreno L, Ebbessen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729

    Article  Google Scholar 

  7. Sondergaard T, Bozhevolnyi SI, Novikov SM, Beermann J, Devaux E, Ebbesen TW (2010) Extraordinary optical transmission enhancement by nanofocusing. Nano Lett 10:3123

    Article  CAS  Google Scholar 

  8. Yang JC, Gao H, Suh JY, Zhou W, Lee MH, Odom TW (2010) Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays. Nano Lett 10:3173

    Article  CAS  Google Scholar 

  9. Reibold D, Shao F, Erdmann A, Peschel U (2009) Extraordinary low transmission effects for ultra-thin patterned metal films. Opt Express 17:544

    Article  CAS  Google Scholar 

  10. Spevak IS, Yu Nikitin A, Bezuglyi EV, Levchenko A, Kats AV (2009) Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys Rev B 79:161406

    Article  Google Scholar 

  11. Rodrigo SG, Martin-Moreno L, Yu Nikitin A, Kats AV, Spevak IS, Garcia-Vidal FJ (2009) Extraordinary optical transmission through hole arrays in optically thin metal films. Optics Lett 34:4

    Article  Google Scholar 

  12. Braun J, Gompf B, Kobiela G, Dressel M (2009) How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett 103:203901

    Article  Google Scholar 

  13. Xiao S, Zhang J, Peng L, Jeppesen C, Malureanu R, Kristensen A, Mortensen NA (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97:071116

    Article  Google Scholar 

  14. Xiao S, Mortensen NA (2011) Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays. Optics Lett 36:37

    Article  CAS  Google Scholar 

  15. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  16. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186

    Article  CAS  Google Scholar 

  17. Chen Z, Hooper IR, Sambles JR (2008) Strongly coupled surface plasmons on thin shallow metallic gratings. Phys Rev B 77:161405

    Article  Google Scholar 

  18. Hovel M, Gompf B, Dressel M (2010) Dielectric properties of ultrathin metal films around the percolation threshold. Phys Rev B 81:035402

    Article  Google Scholar 

  19. Innes RA, Sambles JR (1987) Optical characterization of gold using surface plasmon-polaritons. J Phys F Metal Physics 17:277

    Article  CAS  Google Scholar 

  20. Palik ED (1985) Handbook of optical constants of solids, Vol. 1. Aacademic, Orlando, LF

    Google Scholar 

  21. Nagpal P, Lindquist NC, Oh SH, Norris DJ (2009) Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325:594

    Article  CAS  Google Scholar 

  22. Bai W, Gan Q, Song G, Chen L, Kafafi Z, Bartoli F (2010) Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Optics Express 18:A620

    Article  CAS  Google Scholar 

  23. Hu H, Ma C, Liu Z (2010) Plasmonic dark field microscopy. Appl Phys Lett 96:113107

    Article  Google Scholar 

  24. Zheng G, Cui X, Yang C (2010) Surface-wave-enabled darkfield aperture: a method for suppressing background during weak signal detection. PNAS 107:9043

    Article  CAS  Google Scholar 

  25. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  CAS  Google Scholar 

  26. Wu W, Bonakdar A, Mohseni H (2010) Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96:161107

    Article  Google Scholar 

  27. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Q. Gan, W. Bai, Y. Gao, and F. Bartoli are supported by NSF (Award no. 0901324). SH Jiang is supported by NSFC (Award no. 51001029). The authors appreciate Mr. Lei Wang in Fudan University for the assistance in numerical modeling.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoqiang Gan or Filbert J. Bartoli.

Additional information

Qiaoqiang Gan and Wenli Bai contributed equally to this work.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Fig. S1

The setup of the transmission measurement system based on an inverted microscope (Olympus IX81). A Xenon lamp is used as the light source. The transmission light is collected by a ×40 objective lens with a numerical aperture of 0.6. A diaphragm is used to confine the observation area. The collected light is coupled into a multimode fiber bundle interfaced with a compact spectrometer (Ocean Optics USB 4000) (DOC 134 kb)

Fig. S2

a Measured TE transmission spectra through the nanopatterned metal film characterized in Fig. 2. b Numerical simulation of the TE transmission the sample. We believe that the difference between the experiment and modeling results is introduced by the nonparallel incident light employed in the microscope imaging system. In addition, nanofabrication error and surface roughness of the sample should also play an important role in the observation, which cannot be considered completely in the numerical modeling (DOC 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Q., Bai, W., Jiang, S. et al. Short-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns. Plasmonics 7, 47–52 (2012). https://doi.org/10.1007/s11468-011-9274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9274-8

Keywords

Navigation