Skip to main content
Log in

Enhancing the Dual-Band Guiding Capabilities of Coaxial Spoof Plasmons via use of Transmission Line Concepts

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We derive closed analytical forms for the response of coaxial spoof plasmons, aided by transmission line concepts under the effective complex surface impedance framework. This constitutes a powerful platform to improve as well as to elucidate designs with enhanced performances. In particular, we propose a dual-band spoof plasmon waveguiding geometry with the higher order slow-wave mode operating well below the regime governed by dispersion of periodic guides (Bragg reflections at Brillouin zone boundaries), that is, diffraction. The analysis is supported by eigen mode numerical calculations. As an example in a waveguide device context, we demonstrate the dual-band planar routing ability of elliptical–coaxial cable-based spoof plasmons along a straight chain as well as a Y-splitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons. Springer, New York

    Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review, Sens. Actuators B 54(1–2):3–15

    Article  Google Scholar 

  4. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photon 1(11):641–648

    Article  CAS  Google Scholar 

  5. Pendry JB, Martín-Moreno L, García-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848

    Article  CAS  Google Scholar 

  6. García-Vidal FJ, Martín-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7(2):S97–S101

    Article  Google Scholar 

  7. Maier SA, Andrews SR, Martín-Moreno L, García-Vidal FJ (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17):1–4

    Article  Google Scholar 

  8. Fernández-Domínguez AI, Williams CR, García-Vidal FJ, Martín-Moreno L, Andrews SR, Maier SA (2008) Terahertz surface plasmon polaritons on a helically grooved wire. Appl Phys Lett 93(14):41109-1-3

    Article  Google Scholar 

  9. Williams CR, Andrews SR, Maier SA, Fernández-Domínguez AI, Martín-Moreno L, García-Vidal FJ (2008) Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photon 2(3):175–179

    Article  CAS  Google Scholar 

  10. Hibbins AP, Evans BR, Sambles JR (2005) Experimental verification of designer surface plasmons. Science 308(5722):670–672

    Article  CAS  Google Scholar 

  11. Ishimaru A (1990) Electromagnetic wave propagation, radiation, and scattering. Prentice Hall, Englewood Cliffs

    Google Scholar 

  12. Collin RE (1991) Field theory of guided waves. Wiley, IEEE Press, New York

    Google Scholar 

  13. Goubau G (1950) Surface waves and their application to transmission line. J Appl Phys 21(11):1119–1128

    Article  Google Scholar 

  14. Akalin T, Treizebré A, Bocquet B (2006) Single-wire transmission lines at terahertz frequencies. IEEE Trans Microwave Theor Tech 54(6):2762–2767

    Article  Google Scholar 

  15. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microwave Theory Tech 52(10):2438–2447

    Article  Google Scholar 

  16. Pozar D (2004) Microwave engineering. Wiley, New York

    Google Scholar 

  17. Navarro-Cía M, Beruete M, Agrafiotis S, Falcone F, Sorolla M, Maier SA (2009) Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. Opt Express 17(20):18184–18195

    Article  Google Scholar 

  18. Williams CR, Misra M, Andrews SR, Maier SA, Carretero-Palacios S, Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2010) Dual band terahertz waveguiding on a planar metal surface patterned with annular holes. Appl Phys Lett 96(1):011101-1-3

    Article  Google Scholar 

  19. Collin RE, Zucker FJ (1969) Antenna theory. McGraw-Hill, New York

    Google Scholar 

  20. Navarro R, Boria VE, Gimeno B, Coves A, Ferrando M (2000) Full modal analysis of confocal coaxial elliptical waveguides. IEE Proc Microw Antennas Propag 147(5):374–380

    Article  Google Scholar 

  21. Engheta N (2007) Circuits with light at nanoscale: optical nanocircuits inspired by metamaterials. Science 317(5845):1698–1702

    Article  CAS  Google Scholar 

  22. Staffaroni M, Conway J, Vedantam S, Tang J, and Yablonovitch E (2010) Circuit analysis in metal-optics, arXiv:1006.3126v5.

Download references

Acknowledgment

The authors are grateful to Dr. F. Falcone for useful ideas and discussion. This work has been supported by Spanish Government under contract Consolider “Engineering Metamaterials” CSD2008-00066 and by the US Air Force Office of Scientific Research (AFOSR). Miguel Navarro-Cía also acknowledges the exchange grant given by the European Science Foundation (ESF) within the framework of the ESF Activity entitled “New Approaches to Biochemical Sensing with Plasmonic Nanobiophotonics (PLASMON-BIONANOSENSE).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Navarro-Cía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Cía, M., Beruete, M., Sorolla, M. et al. Enhancing the Dual-Band Guiding Capabilities of Coaxial Spoof Plasmons via use of Transmission Line Concepts. Plasmonics 6, 295–299 (2011). https://doi.org/10.1007/s11468-011-9203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9203-x

Keywords

Navigation