Skip to main content
Log in

Anomalous Charge Transport: A New “Time Domain” Generalization of the Drude Model

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a new generalization of the Drude model for describing the conductors in nanostructured form. The new feature that appeared is the assumption of a collective mode at a finite frequency. This leads to the occurrence of anomalous charge transport. With appropriate scattering times it is possible to mimic the infrared properties of oxides and poor conductors in the form of nanoparticles and nanowires. The electron current in these cases reverses its direction before decaying to zero. Specific examples considered are ZnO, TiO2, GaAs, Si, SWCN. The model also predicts that the current will have a damped oscillation in time, a possible new effect detectable with femtosecond time resolved techniques. Results are presented for the velocity correlation functions, the mean square deviation of position and the diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ziman M (1979) Principles of the theory of solids. Cambridge University Press, Cambridge

    Google Scholar 

  2. Kittel C (1995) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  3. Di Sia P, Dallacasa V, Dallacasa F (2011) J Nanosci Nanotechnol 11:1

    Article  Google Scholar 

  4. Rudin W (1987) Real and complex analysis. McGraw-Hill, New York, McGraw-Hill International Editions: Mathematics Series

    Google Scholar 

  5. Pirozhenko I, Lambrecht A (2008) Phys Rev A 77:013811

    Article  Google Scholar 

  6. Schmuttenmaer CA (2008) Terahertz Science and Technology 1:1

    Google Scholar 

  7. Graetzel M (2005) Inorg Chem 44(20):6841

    Article  CAS  Google Scholar 

  8. Graetzel M (2003) J Photochem Photobiol C: Photochem Rev 4:145

    Article  Google Scholar 

  9. Hendry E, Koeberg M, O'Regan B, Bonn M (2006) Nano Lett 6:755

    Article  CAS  Google Scholar 

  10. Baxter JB, Schmuttenmaer CA (2006) J Phys Chem B 110:25229

    Article  CAS  Google Scholar 

  11. Nienhuys H-K, Sundström V (2005) Appl Phys Lett 87:012101

    Article  Google Scholar 

  12. Turner GM, Beard MC, Schmuttenmaer CA (2002) J Phys Chem B 106:11716

    Article  CAS  Google Scholar 

  13. Hendry E, Schins JM, Candeias LP, Siebbeles LDA, Bonn M (2004) Phys Rev Lett 92:196601

    Article  CAS  Google Scholar 

  14. Hendry E, Koeberg M, Schins JM, Nienhuys HK, Sundström V, Siebbeles LDA, Bonn M (2005) Phys Rev B 71:125201

    Article  Google Scholar 

  15. Jeon TI, Kim KJ, Kang C, Maeng IH, Son JH, An KH, Lee JY, Lee YH (2004) J Appl Phys 95:5736

    Article  CAS  Google Scholar 

  16. Altan H, Huang F, Federici JF, Lan AD, Grebel H (2004) J Appl Phys 96:6685

    Article  CAS  Google Scholar 

  17. Smith NV (2001) Phys Rev B 64:155106

    Article  Google Scholar 

  18. Parkinson P, Lloyd-Hughes J, Gao Q, Tan HH, Jagadish C, Johnston MB, Herz LM (2007) Nano Lett 7:2162

    Article  CAS  Google Scholar 

  19. Parkinson P, Joyce HJ, Gao Q, Tan HH, Zhang X, Zou J, Jagadish C, Herz LM, Johnston MB (2009) Nano Lett 9:3349

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Di Sia or Valerio Dallacasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Sia, P., Dallacasa, V. Anomalous Charge Transport: A New “Time Domain” Generalization of the Drude Model. Plasmonics 6, 99–104 (2011). https://doi.org/10.1007/s11468-010-9174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9174-3

Keywords

Navigation