Skip to main content
Log in

Phase Transition and Optical Properties of DNA–Gold Nanoparticle Assemblies

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We review recent work on DNA-linked gold nanoparticle assemblies. The synthesis, properties, and phase behavior of such DNA–gold nanoparticle assemblies are described. These nanoparticle assemblies have strong optical extinction in the ultraviolet and visible light regions; hence, the technique is used to study the kinetics and phase transitions of DNA–gold nanoparticle assemblies. The melting transition of DNA–gold nanoparticle assemblies shows unusual trends compared to those of free DNA. The phase transitions are influenced by many parameters, such as nanoparticle size, DNA sequence, DNA grafting density, DNA linker length, interparticle distance, base pairing defects, and disorders. The physics of the DNA–gold nanoparticle assemblies can be understood in terms of the phase behavior of complex fluids, with the colloidal gold interaction potential dominated by DNA hybridization energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frank-Kamenetskii MD (1997) Biophysics of the DNA molecule. Phys Rep 288:13–60

    Article  Google Scholar 

  2. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  CAS  Google Scholar 

  3. Mirkin CA et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  4. Alivisatos AP et al (1996) Organization of nanocrystal molecules using DNA. Nature 382:609–611

    Article  CAS  Google Scholar 

  5. Mucic RC et al (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120: 12674–12675

    Article  CAS  Google Scholar 

  6. Maeda Y et al (2001) Two-dimensional assembly of gold nanoparticles with a DNA network template. Appl Phys Lett 79:1181–1183

    Article  CAS  Google Scholar 

  7. Coffer JL et al (1996) Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl Phys Lett 69:3851–3853

    Article  CAS  Google Scholar 

  8. Torimoto T et al (1999) Fabrication of CdS nanoparticle chains along DNA double strands. J Phys Chem B 103: 8799–8803

    Article  CAS  Google Scholar 

  9. Mitchell G et al (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121:8122–8123

    Article  CAS  Google Scholar 

  10. Pathak S et al (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104.

    Article  CAS  Google Scholar 

  11. Cassell AM et al (1998) Assembly of DNA/fullerene hybrid materials. Angew Chem Int Ed 37:1528–1531

    Article  CAS  Google Scholar 

  12. Braun E et al (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  Google Scholar 

  13. Martin BR et al (1999) Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv Mater 11:1021–1025

    Article  CAS  Google Scholar 

  14. Yan H et al (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884

    Article  CAS  Google Scholar 

  15. Tsang SC et al (1997) Immobilisation platinated and iodinated oligonucloetides on carbon nanotubes. Angew Chem Int Ed 36:2197–2200

    Google Scholar 

  16. Guo Z et al (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10:701–703

    Article  CAS  Google Scholar 

  17. Chen RJ et al (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  18. Shim M et al (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  CAS  Google Scholar 

  19. Baker SE et al (2002) Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett 2:1413–1417

    Article  CAS  Google Scholar 

  20. Dwyer C et al (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601–604

    Article  CAS  Google Scholar 

  21. Elghanian R et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properites of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  22. Storhoff JJ et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  23. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  24. He L et al (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  25. Park S-J et al (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  CAS  Google Scholar 

  26. Wang J et al (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. J Am Chem Soc 124:4208–4209

    Article  CAS  Google Scholar 

  27. Cao YC et al (2002) Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 297: 1536–1540

    Article  CAS  Google Scholar 

  28. Maxwell DJ et al (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612

    Article  CAS  Google Scholar 

  29. Weizmann Y et al (2003) Amplified DNA sensing 404 and immunosensing by the rotation of functional magnetic particles. J Am Chem Soc 125:3452–3454

    Article  CAS  Google Scholar 

  30. Gerion D et al (2002) Sorting fluorescent nanocrystals with DNA. J Am Chem Soc 124:7070–7074

    Article  CAS  Google Scholar 

  31. Sun Y, Kiang C-H (2005) In: Nalwa HS (ed) Handbook of nanostructured biomaterials and their applications in nanobiotechnology, vol 2. American Scientific Publishers, Stevenson Ranch, pp 224–246

    Google Scholar 

  32. Kiang C-H (2003) Phase transition of DNA-linked gold nanoparticles. Physica A 321:164–169

    Article  CAS  Google Scholar 

  33. Anderson VJ, Lekkerkerker HNW (2002) Insights into phase transition kinetics from colloid science. Nature 416:811–815

    Article  CAS  Google Scholar 

  34. Kushon SA et al (2003) Detection of single nucleotide mismatches via fluorescent polymer superquenching. Langmuir 19:6456–6464

    Article  CAS  Google Scholar 

  35. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  CAS  Google Scholar 

  36. Hill AA et al (2000) Genomic anlaysis of gene expression in C. elegans. Science 290:809–812

    Article  CAS  Google Scholar 

  37. Zhou B et al (2002) Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat. Proc Natl Acad Sci USA 99:5241–5246

    Article  CAS  Google Scholar 

  38. Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a coloimetric biosensor. Anal Chem 76:1627–1632

    Article  CAS  Google Scholar 

  39. Lipshutz RJ et al (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24

    Article  CAS  Google Scholar 

  40. Austin RH et al (1997) Stretch genes. Phys Today 50:32–38

    CAS  Google Scholar 

  41. Taton TA et al (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  CAS  Google Scholar 

  42. Sun Y et al (2005) The reversible phase transition of DNA-linked colloidal gold assemblies. Physica A 354:1–9

    Article  CAS  Google Scholar 

  43. Lukatsky DB, Frenkel D (2004) Phase behavior and selectivity of DNA-linked nanoparticle assemblies. Phys Rev Lett 92:068302–1–4

    Article  Google Scholar 

  44. Drukker K et al (2001) Model simulations of DNA denaturation dynamics. J Chem Phys 114:579–590

    Article  CAS  Google Scholar 

  45. Sun Y et al (2005) Melting transition of directly-linked gold nanoparticle DNA assembly. Physica A 350:89–94

    Article  CAS  Google Scholar 

  46. Lazarides AA, Schatz GC (2000) DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B 104:460–467

    Article  CAS  Google Scholar 

  47. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  48. Cohen I et al (2004) Shear-induced configurations of confined colloidal suspensions. Phys Rev Lett 93:046001–1–4

    Google Scholar 

  49. Schall P et al (2004) Visualization of dislocation dynamics in colloidal crystals. Science 305:1944–1948

    Article  CAS  Google Scholar 

  50. Manley S et al (2004) Limits to gelation in colloidal aggregation. Phys Rev Lett 93:108302–1–4

    Article  Google Scholar 

  51. Jin R et al (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654

    Article  CAS  Google Scholar 

  52. Park SY, Stroud D (2003) Theory of melting and the optical properties of gold/DNA nanocomposites. Phys Rev B 67:212202–1–4

    Google Scholar 

  53. Harris NC, Kiang C-H (2005) Disorder in DNA-linked gold nanoparticle assemblies. Phys Rev Lett 95:046101–1–4

    Google Scholar 

  54. Harris NC, Kiang C-H (2006) Defects can increase the melting temperature of DNA-nanoparticle assemblies. J Phys Chem B 110:16393–16396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also thank NSF DMR-0505814, NIH 1T90DK70121-01, Hamill Innovation Fund, and Welch Foundation C-1632 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hwa Kiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Harris, N.C. & Kiang, CH. Phase Transition and Optical Properties of DNA–Gold Nanoparticle Assemblies. Plasmonics 2, 193–199 (2007). https://doi.org/10.1007/s11468-007-9034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-007-9034-y

Keywords

Navigation