Skip to main content
Log in

Optical Nanofocusing on Tapered Metallic Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tapered metal wires show a remarkable ability to ‘squeeze’ the lateral extent of a propagating surface-plasmon-polariton mode as it travels toward the tip of the taper. The transformation can be continued well below the diffraction limit to terminate at a nanoscale apex where intense near-fields are created. We perform the first full numerical simulations to investigate and quantify this phenomenon. We find optimal angles for maximal tip-field enhancement on conical wires by considering absorption, scattering to radiation and reflection. The optimal parameters we obtain contradict the conditions for adiabatic tapering, thereby advocating the use of numerical simulations. Despite the influence of losses, nanofocusing is still highly efficient for a broad range of practical metals, visible wavelengths and taper geometries. Diverse nano-optic applications can benefit directly and significantly from the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mat 2:229–232

    Article  CAS  Google Scholar 

  3. Pile DFP, Ogawa T, Gramotnev DK, Okamoto T, Haraguchi M, Fukui M, Matsuo S (2005) Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87:061106

    Article  Google Scholar 

  4. Krenn JR, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg FR (2002) Non-diffraction-limited light transport by gold nanowires. Europhys Lett 60:663–669

    Article  CAS  Google Scholar 

  5. Yatsui T, Kourogi M, Ohtsu M (2001) Plasmon waveguide for optical far/near-field conversion. Appl Phys Lett 79:4583–4585

    Article  CAS  Google Scholar 

  6. Hondros D (1909) Electromagnetic filament waves. Ann Phys 30:905–950

    Google Scholar 

  7. Pfeiffer CA, Economou EN, Ngai KL (1974) Surface polaritons in a circularly cylindrical interface - surface plasmons. Phys Rev B 10:3038–3051

    Article  CAS  Google Scholar 

  8. Ashley JC, Emerson LC (1974) Dispersion-relations for non-radiative surface plasmons on cylinders. Surf Sci 41:615–618

    Article  Google Scholar 

  9. Aers GC, Boardman AD, Paranjape BV (1980) Non-radiative surface plasmon-polariton modes of inhomogeneous metal circular-cylinders. J Phys F 10:53–65

    Article  Google Scholar 

  10. Prade B, Vinet JY (1994) Guided optical waves in fibers with negative dielectric-constant. J Lightwave Tech 12:6–18

    Article  Google Scholar 

  11. Novotny L, Hafner C (1994) Light-propagation in a cylindrical wave-guide with a complex, metallic, dielectric function. Phys Rev E 50:4094–4106

    Article  CAS  Google Scholar 

  12. Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T (1997) Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 22:475–477

    Google Scholar 

  13. Babadjanyan AJ, Margaryan NL, Nerkararyan KhV (2000) Superfocusing of surface polaritons in the conical structure. J Appl Phys 87:3785–3787

    Article  CAS  Google Scholar 

  14. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  Google Scholar 

  15. Tong LM, Gattass RR, Ashcom JB, He SL, Lou JY, Shen MY, Maxwell I, Mazur E (2003) Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426:816–819

    Article  CAS  Google Scholar 

  16. Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, New York.

    Google Scholar 

  17. Sumetsky M (2006) How thin can a microfiber be and still guide light? Opt Lett 31:870–872

    Article  CAS  Google Scholar 

  18. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  19. Nerkararyan KhV (1997) Superfocusing of a surface polarition in a wedge-like structure. Phys Lett A 237:103–105

    Article  CAS  Google Scholar 

  20. Gramotnev DK (2005) Adiabatic nanofocusing of plasmons by sharp metallic grooves. J Appl Phys 98:104302

    Article  Google Scholar 

  21. Pile DFP, Gramotnev DK (2006) Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl Phys Lett 89:041111

    Article  Google Scholar 

  22. Pile DFP, Gramotnev DK (2006) Erratum: adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl Phys Lett 89:119901

    Article  Google Scholar 

  23. Zuev VS, Kuznetsova TI (1997) Concentration of an optical field in an optical coaxial line. Quantum Elec 27:450–454

    Article  Google Scholar 

  24. Ruppin R (2001) Extinction properties of thin metallic nanowires. Opt Commun 190:205–209

    Article  CAS  Google Scholar 

  25. Ruppin R (2005) Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip. Phys Lett A 340:299–302

    Article  CAS  Google Scholar 

  26. Jin J (2002) The finite element method in electromagnetics. Wiley-Interscience, New York

    Google Scholar 

  27. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  28. Lide DR (ed) (1996) CRC handbook of chemistry and physics, 77th edn. CRC Press, London

    Google Scholar 

  29. Krug II JT, Sánchez EJ, Xie XS (2002) Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulations. J Chem Phys 116:10895–10901

    Article  Google Scholar 

  30. Frey HG, Witt S, Felderer K, Guckenberger R (2004) High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys Rev Lett 93: 200801

    Article  Google Scholar 

  31. van Hulst NF, Veerman JA, Garcia-Parajo MF, Kuipers L (2000) Analysis of individual (macro)molecules and proteins using near-field optics. J Chem Phys 112:7799–7810

    Article  Google Scholar 

  32. Keilmann F (1999) Surface-polariton propagation for scanning near-field optical microscopy application. J Microbiol 194:567–570

    CAS  Google Scholar 

  33. Bouhelier A, Renger J, Beversluis MR, Novotny L (2003) Plasmon-coupled tip-enhanced near-field optical microscopy. J Microbiol 210:220–224

    CAS  Google Scholar 

  34. Descrovi E, Vaccaro L, Aeschimann L, Nakagawa W, Staufer U, Herzig HP (2005) Optical properties of microfabricated fully-metal-coated near-field probes in collection mode. J Opt Soc Am A 22:1432–1441

    Article  Google Scholar 

  35. Janunts NA, Baghdasaryan KS, Nerkararyan KV, Hecht B (2005) Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt Commun 253:118–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader A. Issa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issa, N.A., Guckenberger, R. Optical Nanofocusing on Tapered Metallic Waveguides. Plasmonics 2, 31–37 (2007). https://doi.org/10.1007/s11468-006-9022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-006-9022-7

Key words

Navigation