Skip to main content
Log in

On the question of quark confinement in the Abelian U(1) QED gauge interaction

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

If we approximate light quarks as massless and apply the Schwinger confinement mechanism to light quarks, we will reach the conclusion that a light quark q and its antiquark \({\bar q}\) will be confined as a \(q\bar q\) boson in the Abelian U(1) QED gauge interaction in (1+1)D, as in an open string. From the work of Coleman, Jackiw, and Susskind, we can infer further that the Schwinger confinement mechanism persists even for massive quarks in (1+ 1)D. Could such a QED-confined \(q\bar q\) one-dimensional open string in (1 + 1) D be the idealization of a flux tube in the physical world in (3+l)D, similar to the case of QCD-confined \(q\bar q\) open string? If so, the QED-confined \(q\bar q\) bosons may show up as neutral QED mesons in the mass region of many tens of MeV [Phys. Rev. C 81, 064903 (2010) & J. High Energy Phys. 2020(8), 165 (2020)]. Is it ever possible that a quark and an antiquark be produced and interact in QED alone to form a confined QED meson? Is there any experimental evidence for the existence of a QED meson (or QED mesons)? The observations of the anomalous soft photons, the XI7 particle, and the E38 particle suggest that they may bear the experimental evidence for the existence of such QED mesons. Further confirmation and investigations on the XI7 and E38 particles will shed definitive light on the question of quark confinement in QED in (3+1)D. Implications of quark confinement in the QED interaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J. Schwinger, Gauge invariance and mass II, Phys. Rev. 128(5), 2425 (1962)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. J. Schwinger, Gauge theory of vector particles, in: Theoretical Physics, Trieste Lectures, 1962 (IAEA, Vienna, 1963), page 89

    Google Scholar 

  3. S. Coleman, R. Jackiw, and L. Susskind, Chagee shielding and quark confinement in the massive Schwinger model, Ann. Phys. 93(1–2), 267 (1975)

    Article  ADS  Google Scholar 

  4. S. Coleman, More about the massive Schwinger model, Ann. Phys. 101(1), 239 (1976)

    Article  ADS  Google Scholar 

  5. A. M. Polyakov, Quark confinement and topology of gauge theories, Nucl. Phys. B 120(3), 429 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  6. A. M. Polyakov, Gauge Fields and Strings, Hardwood Academic Publishers, Switzerland, 1987

    MATH  Google Scholar 

  7. K. G. Wilson, Confinement of quarks, Phys. Rev. D 10(8), 2445 (1974)

    Article  ADS  Google Scholar 

  8. J. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D 11(2), 395 (1975)

    Article  ADS  Google Scholar 

  9. S. Mandelstam, Vortices and quark confinement in non-Abelian gauge theories, Phys. Lett. B 53(5), 476 (1975)

    Article  Google Scholar 

  10. T. Banks, B. Myerson, and J. Kogut, Phase transitions in Abelian lattice gauge theories, Nucl. Phys. B 129(3), 493 (1977)

    Article  ADS  Google Scholar 

  11. J. Glimm and A. Jaffe, Instantons in a U(1) lattice gauge theory: A Coulomb dipole gas, Commun. Math. Phys. 56(3), 195 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  12. M. E. Peskin, Mandelstam–’t Hooft duality in Abelian lattice models, Ann. Phys. 113(1), 122 (1978)

    Article  ADS  Google Scholar 

  13. A. Guth, Existence proof of a nonconfining phase in four-dimensional lattice gauge theory, Phys. Rev. D 21(8), 2291 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  14. K. I. Kondo, Existence of confinement phase in quantum electrodynamics, Phys. Rev. D 58(8), 085013 (1998)

    Article  ADS  Google Scholar 

  15. G. Magnifico, T. Felser, P. Silvi, and S. Montangero, Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks, Nat. Commun. 12(1), 3600 (2021), arXiv: 2011.10658

    Article  ADS  Google Scholar 

  16. S. D. Drell, H. R. Quinn, B. Svetitsky, and M. Weinstein, Quantum electrodynamics on a lattice: A Hamil-tonian variational approach to the physics of the weak-coupling region, Phys. Rev. D 19(2), 619 (1979)

    Article  ADS  Google Scholar 

  17. G. Arnold, B. Bunk, T. Lippert, and K. Schilling, Compact QED under scrutiny: It’s first order, Nucl. Phys. B Proc. Suppl. 119, 864 (2003), arXiv: hep-lat/0210010

    Article  MATH  ADS  Google Scholar 

  18. L. C. Loveridge, O. Oliveira, and P. J. Silva, Lattice pure gauge compact QED in the Landau gauge: The photon propagator, the phase structure, and the presence of Dirac strings, Phys. Rev. D 104(11), 114511 (2021), and references cited therein

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82(5), 664 (1951)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. C. Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific Publisher, 1994

  21. H. Georgi, The Schwinger point, J. High Energy Phys. 11, 057 (2019), arXiv: 1905.09632

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Georgi and B. Noether, Non-perturbative effects and unparticle physics in generalized Schwinger models, arXiv: 1908.03279v3 (2019)

  23. H. Georgi and B. Warner, Generalizations of the Sommerfield and Schwinger models, J. High Energy Phys. 01, 047 (2020), arXiv: 1907.12705v2

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. H. Georgi, Automatic fine-tuning in the two-flavor Schwinger model, Phys. Rev. Lett. 125(18), 181601 (2020), arXiv: 2007.15965

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Georgi, Mass perturbation theory in the 2-flavor Schwinger Model with opposite masses, J. High Energy Phys. 2022(10), 119 (2022), arXiv: 2206.14691

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. R. Dempsey, I. R. Klebanov, S. S. Pufu, and B. Zan, Discrete chiral symmetry and mass shift in lattice Hamiltonian approach to Schwinger model, arXiv: 2206.05308 (2022)

  27. C. Y. Wong, Anomalous soft photons in hadron production, Phys. Rev. C 81(6), 064903 (2010), arXiv: 1001.1691

    Article  ADS  Google Scholar 

  28. C. Y. Wong, Anomalous soft photons associated with hadron production in string fragmentation, Talk presented at the IX International Conference on Quark Confinement and Hadron Spectrum, Madrid, Spain, Aug. 30–Sep. 3, 2010, AIP Conf. Proc. 1343, 447 (2011), arXiv: 1011.6265

    Article  ADS  Google Scholar 

  29. C. Y. Wong, An overview of the anomalous soft photons in hadron production, Talk presented at International Conference on the Structure and the Interactions of the Photon, 20–24 May 2013, Paris, France, PoS Photon 2013, 002 (2014), arXiv: 1404.0040

    ADS  Google Scholar 

  30. C. Y. Wong, Open string QED meson description of the X17 particle and dark matter, J. High Energy Phys. 2020(8), 165 (2020), arXiv: 2001.04864

    Article  MathSciNet  Google Scholar 

  31. C. Y. Wong, On the stability of the open-string QED neutron and dark matter, Europhys. J. A 58, 100 (2022), arXiv: 2010.13948

    ADS  Google Scholar 

  32. C. Y. Wong, QED mesons, the QED neutron, and the dark matter, in: Proceedings of the 19th International Conference on Strangeness in Quark Matter, EPJ Web Confer. 259, 13016 (2022), arXiv: 2108.00959

    Article  Google Scholar 

  33. C. Y. Wong, QED meson description of the X17 and other anomalous particles, in: Proceedings of the Workshop of “ng Light on X17”, September 6–8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy, arXiv: 2201.09764

  34. C. Y. Wong and A. Koshelkin, Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, arXiv: 2111.14933 (2021)

  35. A. Koshelkin and C. Y. Wong, Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, in Proceedings of the 41st International Conference in High Energy Physics, 6–13 July, 2022, Bologna, Italy, PoS 414, 302 (2022), arXiv: 2212.11749

  36. P. V. Chliapnikov, E. A. De Wolf, A. B. Fenyuk, L. N. Gerdyukov, Y. Goldschmidt-Clermont, V. M. Ronjin, and A. Weigend, Observation of direct soft photon production in np interactions at 280 GeV/c, Phys. Lett. B 141(3–4), 276 (1984)

    Article  ADS  Google Scholar 

  37. F. Botterweck, et al. (EHS-NA22 Collaboration), Direct soft photon production in K+p and π+p interactions at 250 GeV/c, Z. Phys. Chem. 51, 541 (1991)

    ADS  Google Scholar 

  38. S. Banerjee, et al. (SOPHIE/WA83 Collaboration), Observation of direct soft photon production in πp interactions at 280 GeV/c, Phys. Lett. B 305(1–2), 182 (1993)

    Article  ADS  Google Scholar 

  39. A. Belogianni, W. Beusch, T. J. Brodbeck, D. Evans, B. R. French, A. Jacholkowski, J. B. Kinson, A. Kirk, V. Lenti, R. A. Loconsole, V. Manzari, I. Minashvili, V. Perepelitsa, N. Russakovich, P. Sonderegger, M. Spyropoulou-Stassinaki, G. Tchlatchidze, G. Vassil-iadis, I. Vichou, and O. Villalobos-Baillie (WA91 Collaboration), Confirmation of a soft photon signal in excess of QED expectations in πp interactions at 280 GeV/c, Phys. Lett. B 408(1–4), 487 (1997)

    Article  ADS  Google Scholar 

  40. A. Belogianni, et al. (WA102 Collaboration), Further analysis of a direct soft photon excess in πp interactions at 280-GeV/c, Phys. Lett. B 548(3–4), 122 (2002)

    Article  ADS  Google Scholar 

  41. A. Belogianni, W. Beusch, T. J. Brodbeck, F. S. Dzheparov, B. R. French, P. Ganoti, J. B. Kinson, A. Kirk, V. Lenti, I. Minashvili, V. F. Perepelitsa, N. Russakovich, A. V. Singovsky, P. Sonderegger, M. Spyropoulou-Stassinaki, and O. Villalobos Baillie (WA102 Collaboration), Observation of a soft photon signal in excess of QED expectations in pp interactions, Phys. Lett. B 548(3–4), 129 (2002)

    Article  ADS  Google Scholar 

  42. V. Perepelitsa, Anomalous soft photons in hadronic decays of Z0, Proceedings of the XXXIX International Symposium on Multiparticle Dynamics, Gomel, Belarus, September 4–9, 2009, published in: Nonlin. Phenom. Complex Syst. 12, 343 (2009)

    Google Scholar 

  43. J. Abdallah, et al. (DELPHI Collaboration), Evidence for an excess of soft photons in hadronic decays of Z0, Eur. Phys. J. C 47(2), 273 (2006), arXiv: hep-ex/0604038

    Article  ADS  Google Scholar 

  44. J. Abdallah, et al. (DELPHI Collaboration), Observation of the muon inner bremsstrahlung at LEP1, Eur. Phys. J. C 57(3), 499 (2008)

    Article  ADS  Google Scholar 

  45. J. Abdallah, et al. (DELPHI Collaboration), Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z0 decays, Eur. Phys. J. C 67(3–4), 343 (2010)

    Article  ADS  Google Scholar 

  46. A. J. Krasznahorkay, M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, Z. Vajta, T. J. Ketel, and A. Krasznahorkay, Observation of anomalous internal pair creation in 8Be: A possible indication of a light, neutral boson, Phys. Rev. Lett. 116(4), 042501 (2016), arXiv: 1504.01527

    Article  ADS  Google Scholar 

  47. A. J. Krasznahorkay, et al., New evidence supporting the existence of the hypothetical X17 particle, arXiv: 1910.10459 (2019)

  48. A. J. Krasznahorkay, M. Csatlós, L. Csige, J. Gulyás, A. Krasznahorkay, B. M. Nyakó, I. Rajta, J. Timár, I. Vajda, and N. J. Sas, New anomaly observed in 4He supports the existence of the hypothetical X17 particle, Phys. Rev. C 104(4), 044003 (2021), arXiv: 2104.10075

    Article  ADS  Google Scholar 

  49. A. J. Krasznahorkay, et al., X17: Staus and experiments on 8Be and 4He, presented at the Workshop of “Shedding Light on X17”, September 6–8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy

    Google Scholar 

  50. N. J. Sas, A. J. Krasznahorkay, M. Csatlós, J. Gulyás, B. Kertész, A. Krasznahorkay, J. Molnár, I. Rajta, J. Timár, I. Vajda, and M. N. Harakeh, Observation of the X17 anomaly in the 7Li(p, e+e)8Be direct proton-capture reaction, arXiv: 2205.07744 (2022)

  51. A. J. Krasznahorkay, et al., New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson, arXiv: 2209.10795 (2022)

  52. K. Abraamyan, A. B. Anisimov, M. I. Baznat, K. K. Gudima, M. A. Nazarenko, S. G. Reznikov, and A. S. Sorin, Observation of the E (38)-boson, arXiv: 1208.3829v1 (2012)

  53. K. Abraamyan, C. Austin, M. Baznat, K. Gudima, M. Kozhin, S. Reznikov, and A. Sorin, Check of the structure in photon pairs spectra at the invariant mass of about 38 MeV/c2, EPJ Web of Conferences 204, 08004 (2019)

    Article  Google Scholar 

  54. Proceedings of the Workshop on “Shedding Light on X17”, September 6–8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy; Eds.: M. Raggi, P. Valente, M. Nardecchia, A. Frankenthal, G. Cavoto, published in: D. S. M. Alves, et al., Eur. Phys. J. C 83, 230 (2023)

  55. A. J. Krasznahorkay (for the ATOMKI Collaboration), X17: Status of the experiments on 8Be and 4He, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  56. Kh. U. Abraamyan, Ch. Austin, M. I. Baznat, K. K. Gudima, M. A. Kozhin, S. G. Reznikov, and A. S. Sorin (Dubna Collaboration), Private communications

  57. Y. S. Cheng, H. Z. Huang, and G. Wang (STAR Collaboration), Private communications

  58. A. Papa (for the MEGII Collaboration), X17 search with the MEGII apparatus, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  59. H. N. da Luz (for the TU Prague Collaboration), Measurements of internal pair creation with a time projection chamber-based setup, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  60. C. Gustavino (for the nTOF Collaboration), The search for 4 He anomaly at n_TOF experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  61. E. Depero (for the NA64 Collaboration), X17 in the NA64 experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  62. L. Darmé, M. Raggi, and E. Nardi, (for the INFNRome Collabration), X17 production mechanism at accelerators, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  63. E. Goudzovski (for the NA48 Collaboration), Search for dark photon in π0 decays by NA48/2 at CERN, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  64. A. K. Perrevoort (for the Mu3e Collaboration), Prospects for Dark Photon Searches in the Mu3e Experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  65. L. Doria (for the MAGIX Collaboration), Dark Matter and X17 Searches at MESA 4.4. 2 Light Dark Matter, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  66. A. Gasparian (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3–60 MeV Mass Range, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  67. A. Ahmidouch, et al. (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3–60 MeV Mass Range, arXiv: 2108.13276 (2021)

  68. V. Kozhuharov (for the PADME Collaboration), Searching X17 with positrons at PADME, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]

  69. E. Cline, et al. (for the DarkLight Collaboration), Searching for New Physics with DarkLight at the ARIEL Electron-Linac, arXiv: 2208.04120 (2022)

  70. P. Navrátil, ARIEL experiments and theory, arXiv: 2210.08438 (2022)

  71. S. Huang (for the LUXE Collaboration), Probing new physics at the LUXE experiment, Proceedings of 41st International Conference on High Energy physics -ICHEP2022 6–13 July, 2022, arXiv: 2211.11045

  72. G. Azuelos, D. Bryman, W. C. Chen, H. de Luz, L. Doria, A. Gupta, L. A. Hamel, M. Laurin, K. Leach, G. Lefebvre, J. P. Martin, A. Robinson, N. Starinski, R. Sykora, D. Tiwari, U. Wichoski, and V. Zacek, Status of the X17 search in Montreal, J. Phys. Conf. Ser. 2391(1), 012008 (2022)

    Article  Google Scholar 

  73. M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets, Nuovo Cim. 4(S2), 848 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  74. M. Tanabashi, et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2019)

    Article  MathSciNet  Google Scholar 

  75. A. Abashian, N. E. Booth, and K. M. Crowe, Possible anomaly in meson production in p+d collisions, Phys. Rev. Lett. 5(6), 258 (1960)

    Article  ADS  Google Scholar 

  76. N. E. Booth, A. Abashian, and K. M. Crowe, Anomaly in meson production in p+d collisions, Phys. Rev. Lett. 7(1), 35 (1961)

    Article  ADS  Google Scholar 

  77. J. Banaigs, J. Berger, L. Goldzahl, T. Risser, L. Vu-Hai, M. Cottereau, and C. Le Brun, “ABC” and “DEF” effects in the reaction \(d + p \to H{e^3} + {(mm)^0}\): Position, width, isospin, angular and energy distributions, Nucl. Phys. B 67(1), 1 (1973)

    Article  ADS  Google Scholar 

  78. P. Adlarson, et al., Abashian-Booth- Crowe effect in basic double-pionic fusion: A new resonance? Ptiys. Rev. Lett. 106(24), 242302 (2011)

    Article  ADS  Google Scholar 

  79. M. Bashkanov, H. Clement, and T. Skorodko, Examination of the nature of the ABC effect, Nucl. Phys. A 958, 129 (2017)

    Article  ADS  Google Scholar 

  80. V. I. Komarov, et al., Resonance-like coherent production of a pion pair in the reaction \(pd \to pd\pi \pi \) in the GeV region, Eur. Phys. J. A 54, 206 (2018), arXiv: 1805.01493

    Article  ADS  Google Scholar 

  81. C. Y. Wong, The Wigner function of produced particles in string fragmentation, Phys. Rev. C 80(5), 054917 (2009)

    Article  ADS  Google Scholar 

  82. A. V. Koshelkin and C. Y. Wong, The compactification of QCD4 to QCD2 in a flux tube, Phys. Rev. D 86(12), 125026 (2012), arXiv: 1212.3301

    Article  ADS  Google Scholar 

  83. J. D. Bjorken, Lectures presented in the 1973 Proceedings of the Summer Institute on Particle Physics, edited by Zipt, SLAC-167 (1973)

  84. A. Casher, J. Kogut, and L. Susskind, Vacuum polarization and the absence of free quarks, Phys. Rev. D 10(2), 732 (1974)

    Article  ADS  Google Scholar 

  85. Y. Nambu, Quark model of the factorization of the Veneziano Amplitude, in Lectures at the Copenhagen Symposium: Symmetry and Quark Models, edited by R. Chand, Gordon and Breach, 1970, page 269

  86. Y. Nambu, Strings, monopoles, and gauge fields, Phys. Rev. D 10(12), 4262 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  87. T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys, 46, 1560 (1971), arXiv: hep-th/9302104

    Article  MATH  ADS  Google Scholar 

  88. G. ’tHooft, Topology of the gauge condition and new confinement phases in non-Abelian gauge theories, Nucl. Phys. B 190(3), 455 (1981)

    Article  ADS  Google Scholar 

  89. L. V. Belvedere, J. A. Swieca, K. D. Rothe, and B. Schroer, Generlaized two-dimensional Abelian gauge theories and confinement, Nucl. Phys. B 153, 112 (1979)

    Article  ADS  Google Scholar 

  90. T. Sekido, K. Ishiguro, Y. Koma, Y. Mori, and T. Suzuki, Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics, Phys. Rev. C 75, 064906 (2007), arXiv: hep-ph/ 0703002

    Google Scholar 

  91. T. Suzuki, K. Ishiguro, Y. Koma, and T. Sekido, Gauge-independent Abelian mechanism of color confinement in gluodynamics, Phys. Rev. D 77, 034502 (2008), arXiv: 0706.4366

    Article  ADS  Google Scholar 

  92. H. Suganuma and H. Ohata Local correlation among the chiral condensate, monopoles, and color magnetic fields in Abelian projected QCD, arXiv: 2108.08499 (2021)

  93. G. ’tHooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72(3), 461 (1974)

    Article  ADS  Google Scholar 

  94. G. ’tHooft, A two-dimensional model for mesons, Nucl. Phys. B 75(3), 461 (1974)

    Article  ADS  Google Scholar 

  95. S. Huang, J. W. Negele, and J. Polonyi, Meson structure in QCD2, Nucl. Phys. B 307(4), 669 (1988)

    Article  ADS  Google Scholar 

  96. G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling (SESAM), Observing long colour flux tubes in SU(2) lattice gauge theory, Phys. Rev. D 71, 114513 (2005)

    Article  ADS  Google Scholar 

  97. L. Cosmai, P. Cea, F. Cuteri, and A. Papa, Flux tubes in QCD with (2+1) HISQ fermions, Pos, 4th annual International Symposium on Lattice Field Theory, 24–30 July 2016, University of Southampton, UK, arXiv: 1701.03371 (2017)

    Google Scholar 

  98. N. Cardoso, M. Cardoso, and P. Bicudo, Inside the SU(3) quark-antiquark QCD flux tube: Screening versus quantum widening, Phys. Rev. D 88, 054504 (2013), arXiv: 1302.3633

    Article  ADS  Google Scholar 

  99. P. Bicudo and N. Cardoso, Colour field densities of the quark-antiquark excited flux tubes in SU(3) lattice QCD, Phys. Rev. D 98 (2018) 11, 114507, arXiv: 1808.08815

    Article  Google Scholar 

  100. P. Bicudo, N. Cardoso, and M. Cardoso, Pure gauge QCD flux tubes and their widths at finite temperature, Nucl. Phys. B 940, 88 (2019), arXiv: 1702.03454

    Article  MATH  ADS  Google Scholar 

  101. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995

  102. M. B. Halpern, Quantum “solitons” which are SU(N) fermions, Phys. Rev. D 12(6), 1684 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  103. J. Kogut and L. Susskind, Quark confinement and the puzzle of the ninth axial-vector current, Phys. Rev. D 10(10), 3468 (1974)

    Article  ADS  Google Scholar 

  104. J. Kogut and L. Susskind, How quark confinement solve the \(\eta \to 3\pi \) problem, Phys. Rev. D 11(12), 3594 (1975)

    Article  ADS  Google Scholar 

  105. J. Kogut and D. K. Sinclair, Quark Confinement and the evasion of the Goldestone’s theorem in 1 + 1 dimensions, Phys. Rev. D 12(6), 1742 (1975)

    Article  ADS  Google Scholar 

  106. E. Witten, Non-Abelian bosonization in two dimensions, Commun. Math. Phys. 92(4), 455 (1984)

    Article  MATH  ADS  Google Scholar 

  107. D. Gepner, Non-abelian bosonization and multiflavor QED and QCD in two dimensions, Nucl. Phys. B 252, 481 (1985)

    Article  ADS  Google Scholar 

  108. J. Ellis, Y. Frishman, A. Hanany, and M. Karliner, Quark solitons as constituents of hadrons, Nucl. Phys. B 382(2), 189 (1992)

    Article  ADS  Google Scholar 

  109. Y. Frishman and J. Sonnenschein, Bosonization and QCD in two dimensions, Phys. Rep. 223(6), 309 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  110. Y. Frishman, A. Hanany, and J. Sonnenschein, Subtleties in QCD theory in two dimensions, Nucl. Phys. B 429(1), 75 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  111. A. Armoni and J. Sonnenschein, Mesonic spectra of bosonized QCD2 models, Nucl. Phys. B 457(1–2), 81 (1995)

    Article  ADS  Google Scholar 

  112. A. Armoni, Y. Frishman, J. Sonnenschein, and U. Trittmann, The spectrum of multi-flavor QCD2 and the non-Abelian Schwinger equation, Nucl. Phys. B 537(1–3), 503 (1999)

    Article  MATH  ADS  Google Scholar 

  113. A. Abrashkin, Y. Frishman, and J. Sonnenschein, The spectrum of states with one current acting on the adjoint vacuum of massless, Nucl. Phys. B 703(1–2), 320 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  114. D. J. Gross, I. R. Klebanov, A. V. Matytsin, and A. V. Smilga, Screening vs. confinement in 1+1 dimensions, Nucl. Phys. B 461(1–2), 109 (1996), arXiv: hep-th/ 9511104

    Article  MATH  ADS  Google Scholar 

  115. J. P. Vary, T. J. Fields, and H. J. Pirner, Chiral perturbation theory in the Schwinger model, Phys. Rev. D 53(12), 7231 (1996)

    Article  ADS  Google Scholar 

  116. Y. Hosotani and R. Rodriguez, Bosonized massive N-flavour Schwinger model, J. Phys. Math. Gen. 31(49), 9925 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  117. E. Abdalla, M. C. B. Abdalla, and K. D. Rothe, Two Dimensional Quantum Field Theory, World Scientific Publishing Company, Singapore, 2001

    MATH  Google Scholar 

  118. S. Nagy, Massless fermions in mutiflavor QED, Phys. Rev. D 79(4), 045004 (2009)

    Article  ADS  Google Scholar 

  119. J. Kovács, S. Nagy, I. Nandori, and K. Sailer, Renor-malization of QCD2, J. High Energy Phys. 2011(1), 126 (2011)

    Article  Google Scholar 

  120. S. Weinberg, Phenomenological Lagrangians, Physica A 96(1–2), 327 (1979)

    Article  ADS  Google Scholar 

  121. E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156(2), 269 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  122. G. Veneziano, Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories, Nuovo Cim. A 57(1), 190 (1968)

    Article  ADS  Google Scholar 

  123. X. Artru and G. Mennessier, String model and multi-production, Nucl. Phys. B 70(1), 93 (1974)

    Article  ADS  Google Scholar 

  124. A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103(3), 207 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  125. B. Andersson, G. Gustafson, and T. Sjöstrand, A general model for jet fragmentation, Zeit. für Phys. C 20, 317 (1983)

    Article  ADS  Google Scholar 

  126. B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rep. 97(2–3), 31 (1983)

    Article  ADS  Google Scholar 

  127. T. Sjöstrand and M. Bengtsson, The Lund Monte Carlo for jet fragmentation and e+e physics–jetset version 6.3–an update, Comput. Phys. Commun. 43(3), 367 (1987)

    Article  ADS  Google Scholar 

  128. B. Andersson, G. Gustafson, and B. Nilsson-Almqvist, A model for low-pT hadronic reactions with generalizatios to hadron-nucleus and nucleus-nucleus collisions, Nucl. Phys. B 281(1–2), 289 (1987)

    Article  ADS  Google Scholar 

  129. G. Gatoff and C. Y. Wong, Origin of the soft pT spectra, Phys. Rev. D 46(3), 997 (1992)

    Article  ADS  Google Scholar 

  130. C. Y. Wong and G. Gatoff, The transverse profile of a color flux tube, Phys. Rep. 242(4–6), 489 (1994)

    Article  ADS  Google Scholar 

  131. C. Y. Wong, R. C. Wang, and C. C. Shih, Study of particle production using two-dimensional bosonized QED, Phys. Rev. D 44(1), 257 (1991)

    Article  ADS  Google Scholar 

  132. H. Aihara, et al. (TPC/Two_Gamma Collaboration), Charged hadron production in \({e^ +} - {e^ -}\) annihilation at \(\sqrt s = 29\,\,{\rm{GeV}}\), Lawrence Berkeley Laboratory Report LBL-23737 (1988)

  133. W. Hofmann, Particle composition in hadronic jets in \({e^ +} - {e^ -}\) annihilation, Annu. Rev. Nucl. Part. Sci. 38(1), 279 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  134. A. Petersen, et al. (Mark II Collaboration), Multihadronic events at Ecm = 29 GeV and predictions of QCD models from Ecm = 29 GeV to Ecm = 93 GeV, Phys. Rev. D 37, 1 (1988)

    Article  ADS  Google Scholar 

  135. K. Abe, et al. (SLD Collaboration), Production of \({\pi ^ +},\,\,{{\rm{K}}^ +},\,\,{{\rm{K}}^0},\,{\rm{K}}{* ^0},\,\,\phi ,\,p\) and Λ0 in hadronic Z0 decays, Phys. Rev. D 59, 052001 (1999)

    Article  ADS  Google Scholar 

  136. K. Abreu, et al. (DELPHI Collaboration), Energy dependence of inclusive spectra in \({e^ +} - {e^ -}\) annihilation, Phys. Lett. B 459, 397 (1999)

    Article  ADS  Google Scholar 

  137. H. Yang (BRAHMS Collaboration), Rapidity densities of \({\bar p}\), p and \({\sqrt s _{{\rm{NN}}}} = 200\,\,{\rm{GeV}}\) in p+p and d+Au collisions at \({\sqrt s _{{\rm{NN}}}} = 200\,\,{\rm{GeV}}\), J. Phys. G. 35, 104129 (2008)

    Article  ADS  Google Scholar 

  138. K. Hagel (BRAHMS Collaboration), APS DNP 2008, Oakland, California, USA, Oct. 23–27, 2008

  139. M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of current divergences under SU(3)*SU(3), Phys. Rev. 175(5), 2195 (1968)

    Article  ADS  Google Scholar 

  140. T. Barnes and E. S. Swanson, Diagrammatic approach to meson–meson scattering in the nonrelativistic quark potential model, Phys. Rev. D 46(1), 131 (1992)

    Article  ADS  Google Scholar 

  141. C. Y. Wong, E. S. Swanson, and T. Barnes, Cross sections for π- and ρ-induced dissociation of \({\psi ^\prime}\) and \({\psi ^\prime}\), Phys. Rev. C Nucl. Phys. 62, 045201 (2000)

    Article  ADS  Google Scholar 

  142. C. Y. Wong, E. S. Swanson, and T. Barnes, Heavy quarkonium dissociation cross sections in relativistic heavy-ion collisions, Phy. Rev. C 65, 014903 (2002), arXiv: nucl-th/0106067

    Article  ADS  Google Scholar 

  143. M. Baldicchi, A. V. Nesterenko, G. M. Prosperi, and C. Simolo, QCD coupling below 1 GeV from quarkonium spectrum, Phys. Rev. D 77(3), 034013 (2008)

    Article  ADS  Google Scholar 

  144. A. Deur, S. J. Brodsky, and G. F. de Téramond, The QCD running coupling, Prog. Part. Nuc. Phys. 90, 1 (2016), arXiv: 1604.08082

    Article  ADS  Google Scholar 

  145. F. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110(4), 974 (1958)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  146. V. N. Gribov, Bremsstrahlung of hadrons at high energies, Yad. Fiz. 5, 399 (1967) [Sov. J. Nucl. Phys. 5, 280 (1967)]

    Google Scholar 

  147. L. Van Hove, Cold quark-gluon plasma and multiparticle production, Ann. Phys. 192(1), 66 (1989)

    Article  ADS  Google Scholar 

  148. P. Lichard, and L. Van Hove, The cold quark–gluon plasma as a source of very soft photons in high energy collisions, Phys. Lett. B 245(3–4), 605 (1990)

    Article  ADS  Google Scholar 

  149. P. Lichard, Consistency of data on soft photon production in hadronic interactions, Phys. Rev. D 50(11), 6824 (1994)

    Article  ADS  Google Scholar 

  150. E. Kokoulina, A. Kutov, and V. Nikitin, Gluon dominance model and cluster production, Braz. J. Phys. 37(2c), 785 (2007)

    Article  ADS  Google Scholar 

  151. M. Volkov, E. Kokoulina, and E. Kuraev, Gluon dominance model and cluster production, Ukr. J. Phys. 49, 1252 (2003)

    Google Scholar 

  152. S. Barshay, Anomalous soft photons from a coherent hadronic phase in high-energy collisions, Phys. Lett. B 227(2), 279 (1989)

    Article  ADS  Google Scholar 

  153. E. Shuryak, The soft photon puzzle and pion modification in hadronic matter, Phys. Lett. B 231(1–2), 175 (1989)

    Article  ADS  Google Scholar 

  154. V. Balek, N. Pisutova, and J. Pisut, The puzzle of very soft photon production in hadronic Interactions, Acta Phys. Pol. B 21, 149 (1990)

    Google Scholar 

  155. W. Czyz and W. Florkowski, Soft photon production in the boost invariant color flux tube model, 2. Phys. Chem. 61, 171 (1994)

    Google Scholar 

  156. O. Nachtmann, Nonperturbative QCD effects in high-energy collisions, arXiv: hep-ph/9411345 (1994)

  157. G. W. Botz, P. Haberl, and O. Nachtmann, Soft photons in hadron hadron collisions: Synchrotron radiation from the QCD vacuum? 2. Phys. Chem. 67, 143 (1995)

    Google Scholar 

  158. P. Lebiedowicz, O. Nachtmann, and A. Szczurek, Soft-photon radiation in high-energy proton–proton collisions within the tensor-Pomeron approach: Bremsstrahlung, Phys. Rev. D 106, 034023 (2022), arXiv: 2206.03411

    Article  MathSciNet  ADS  Google Scholar 

  159. Y. Hatta and T. Ueda, Soft photon anomaly and gauge/string duality, Nucl. Phys. B 837(1–2), 22 (2010)

    Article  MATH  ADS  Google Scholar 

  160. S. M. Darbinian, K. A. Ispirian, and A. T. Margarian, Unruh radiation of quarks and the soft photon puzzle in hadronic interactions, Sov. J. Nucl. Phys. 54, 364 (1991)

    Google Scholar 

  161. Yu. A. Simonov, Di-pion decays of heavy quarkonium in the field correlator method, Phys. Atom. Nucl. 71, 1049 (2008), arXiv: hep-ph/07113626

    Article  ADS  Google Scholar 

  162. Yu. A. Simonov, Di-pion emission in heavy quarkonia decays, JETP Lett. 87(3), 121 (2008)

    Article  ADS  Google Scholar 

  163. Yu. A. Simonov and A. I. Veselov, Bottomonium \(\Upsilon (5S)\) decays into BB and BBπ, JETP Lett. 88(1), 5 (2008)

    Article  ADS  Google Scholar 

  164. Yu. A. Simonov and A. I. Veselov, Strong decays and di-pion transitions of \(\Upsilon (5S)\), Phys. Lett. B 671(1), 55 (2009)

    Article  ADS  Google Scholar 

  165. D. E. Kharzeev and F. Loshaj, Anomalous soft photon production from the induced currents in Dirac sea, Phys. Rev. D 89(7), 074053 (2014)

    Article  ADS  Google Scholar 

  166. R. Hagedorn, Statistical thermodynamics of strong interactions at high energies, Nuo. Cim. Suppl. 3, 147 (1965)

    Google Scholar 

  167. I. Abelev, et al. (STAR Collaboration), Strange particle production in p+p collisions at \(\sqrt s = 200\) GeV, Phys. Rev. C 75(6), 064901 (2007)

    Article  ADS  Google Scholar 

  168. I. Abelev, et al. (STAR Collaboration), Systematic measurements of identified particle spectra in pp, d+ Au, and Au+Au collisions at the STAR detector, Phys. Rev. C 79, 034909 (2009)

    Article  ADS  Google Scholar 

  169. A. Adare, et al. (PHENIX Collaboration), Measurement of neutral mesons in pp collisions at \(\sqrt s = 200\) GeV, Phys. Rev. D 83, 052004 (2011)

    Article  ADS  Google Scholar 

  170. A. T. D’yachenko and E. S. Gromova, Detection of particles of dark matter from the spectrum of secondary particles in high-energy proton–proton collisions in a thermodynamic model, J. Phys. Conf. Series 2131, 022 (2021)

    Article  Google Scholar 

  171. A. T. D’yachenko, A. A. Verisokina, and M. A. Verisokina, High-energy collisions of protons and nuclei and the possibility of detecting dark matter particles in the spectra of soft photons, Acta Phys. Pol. B Proc. Suppl. 14(4), 761 (2021)

    Article  Google Scholar 

  172. F. W. N. de Boer, O. Fröhlich, K. E. Stiebing, K. Bethge, H. Bokemeyer, A. Balanda, A. Buda, R. van Dantzig, T. W. Elze, H. Folger, J. van Klinken, K. A. Müller, K. Stelzer, P. Thee, and M. Waldschmidt, A deviation in internal pair conversion, Phys. Lett. B 388(2), 235 (1996)

    Article  ADS  Google Scholar 

  173. F. W. N. de Boer, R. van Dantzig, J. van Klinken, K. Bethge, H. Bokemeyer, A. Buda, K. A. Müller, and K. E. Stiebing, Excess in nuclear pairs near 9 MeV/c2 invariant mass, J. Phys. G 23(11), L85 (1997)

    Article  ADS  Google Scholar 

  174. F. W. N. de Boer, K. Bethge, H. Bokemeyer, R. van Dantzig, J. van Klinken, V. Mironov, K. A. Müller, and K. E. Stiebing, Further search for a neutral boson with a mass around 9 MeV/c2, J. Phys. G 27(4), L29 (2001), arXiv: hep-ph/0101298v2

    Article  ADS  Google Scholar 

  175. A. Vitéz, A. Krasznahorkay, J. Gulyás, and M. Csatlós, L. Csige Z. Gácsi, A. Krasznahorkay Jr., B. M. Nyakó, F. W. N. de Boer, T. J. Ketel, 33 anomalous internal pair creation in 8Be as a signature of the decay of a new particle, Acta Phys. Pol. B39, 483 (2008)

    ADS  Google Scholar 

  176. X. Zhang and G. A. Miller, Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus? Phys. Lett. B 773, 159 (2017)

    Article  ADS  Google Scholar 

  177. J. Feng, et al., Protophobic fifth force interpretation of the observed anomaly in 8Be nuclear transitions, Phys. Rev. Lett. 117, 071803 (2016) (2016)

    Article  ADS  Google Scholar 

  178. J. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T. M. P. Tait, and P. Tanedo, Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95(3), 035017 (2017)

    Article  ADS  Google Scholar 

  179. B. Fornal, Is there a sign of new physics in beryllium transitions? Int. J. Mod. Phys. A 32(25), 1730020 (2017)

    Article  ADS  Google Scholar 

  180. J. Batley, et al. (NA48/2 Collaboration), Search for the dark photon in π0 decays, Phys. Lett. B 746, 178 (2015)

    Article  ADS  Google Scholar 

  181. L. D. Rose, S. Khalil, and S. Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1)-extended two Higgs doublet model, Phys. Rev. D 96(11), 115024 (2017)

    Article  ADS  Google Scholar 

  182. L. Delle Rose, S. Khalil, S. J. D. King, S. Moretti, and A. M. Thabt, Atomki anomaly in family-dependent U(1) extension of the standard model, Phys. Rev. D 99(5), 055022 (2019)

    Article  ADS  Google Scholar 

  183. L. Delle Rose, S. Khalil, S. J. D. King, and S. Moretti, New physics suggested by Atomki anomaly, Foont. Phys. (Lausanne) 7, 73 (2019)

    Google Scholar 

  184. J. Bordes, H. M. Chan, and T. S. Tsun, Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed standard model, Int. J. Mod. Phys. A 34 (25), 1830034 (2019), and references cited therein

    Article  MathSciNet  MATH  Google Scholar 

  185. H. M. Chan and S. T. Tsou, Two variations on the theme of Yang and Mills - the SM and the FSM Invited contribution to the “Festschrift for the Yang Centenary” (edited by F. C. Chen, et al.), arXiv: 2201.12256 (2022)

  186. U. Ellwanger and S. Moretti, Possible explanation of the electron positron anomaly at 17 MeV in 8Be transitions through a light pseudoscalar, J. High Energy Phys. 11(11), 39 (2016)

    Article  Google Scholar 

  187. D. S. M. Alves and N. J. Weiner, A viable QCD axion in the MeV mass range, J. High Energy Phys. 07(7), 92 (2018)

    Article  ADS  Google Scholar 

  188. V. Kubarovsky and J. Rittenhouse West, and S. J. Brodsky, Quantum chromodynamics resolution of the ATOMKI anomaly in 4 He nuclear transitions, arXiv: 2206.14441 (2022)

  189. M. Viviani, L. Girlanda, A. Kievsky, and L. E. Marcucci, \(n{+ ^3}\), and \(n{+ ^3}\) He scattering with the hyper-spherical harmonic method, Phys. Rev. C 102(3), 034007 (2020)

    Article  ADS  Google Scholar 

  190. M. Viviani, E. Filandri, L. Girlanda, C. Gustavino, A. Kievsky, L. E. Marcucci, and R. Schiavilla, X17 boson and the \({\rm{H}}{{\rm{e}}^3}(n,\,\,{{\rm{e}}^ +}\,\,{{\rm{e}}^ -}){\rm{H}}{{\rm{e}}^4}\) and \({\rm{H}}{{\rm{e}}^3}(n,\,\,{{\rm{e}}^ +}\,\,{{\rm{e}}^ -}){\rm{H}}{{\rm{e}}^4}\) processes: A theoretical analysis, Phys. Rev. C 105(1), 014001 (2022)

    Article  ADS  Google Scholar 

  191. M. Munch, O. Sølund Kirsebom, J. A. Swartz, K. Riisager, and H. O. U. Fynbo, Measurement of the full excitation spectrum of the \(^7{\rm{Li}}(p,\,\,\gamma)\alpha \alpha \) reaction at 441 keV, Phys. Lett. B 782, 779 (2018)

    Article  ADS  Google Scholar 

  192. D. Banerjee, et al. (NA64 Collaboration), Search for a hypothetical 16.7 MeV gauge boson and dark photons in the NA64 Experiment at CERN, Phys. Rev. Lett. 120(23), 231802 (2018)

    Article  ADS  Google Scholar 

  193. D. Banerjee, et al. (NA64 Collaboration), Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into \({e^ +}{e^ -}\) pairs, arXiv: 1912.11389 (2019)

  194. C. Taruggi, A. Ghoshal, and M. Raggi (for the PADME Collaboration), Searching for dark photons with the PADME experiment (Conference: C18-05-07.4, pp 17–21, pp 28–34, and pp 337–344), Frascati Phys. Ser. 67, 17, 28, and 334 (2018)

  195. D. Barducci and C. Toni, An updated view on the ATOMKI nuclear anomalies, arXiv: 2212.06453 (2022)

  196. Kh. U. Abraamyan, et al., Resonance structure in the γγ invariant mass spectrum in pC and dC interactions, Phys. Rev. C 80, 034001 (2009)

    Article  ADS  Google Scholar 

  197. Kh. U. Abraamyan, A. B. Anisimov, M. I. Baznat, K. K. Gudima, M. A. Kozhin, V. I. Kukulin, M. A. Nazarenko, S. G. Reznikov, and A. S. Sorin, Diphoton and dipion productions at the Nuclotron/NICA, Eur. Phys. J. A 52(8), 259 (2016)

    Article  ADS  Google Scholar 

  198. W. T. Donnelly, S. J. Freedman, R. S. Lytel, R. D. Peccei, and M. Schwartz, Do axions exist? Phys. Rev. D 18(5), 1607 (1978)

    Article  ADS  Google Scholar 

  199. M. E. El-Nadi and O. E. Badawy, Production of a new light neutral boson in high-energy collisions, Phys. Rev. Lett. 61(11), 1271 (1988)

    Article  ADS  Google Scholar 

  200. M. E. El-Nadi, et al, External electron pair production in high-energy collisions, Nuo. Cim. A 109, 1517 (1996)

    Article  ADS  Google Scholar 

  201. P. L. Jain and G. Singh, Search for new particles decaying into electron pairs of mass below 100 MeV/c2, J. Phys. G 34(1), 129 (2007)

    Article  ADS  Google Scholar 

  202. F. W. N. de Boer, and C. A. Fields, A re-evaluation of evidence for light neutral bosons in nuclear emulsions, Int. J. Mod. Phys. E 20(8), 1787 (2011), arXiv: 1001.3897

    Article  ADS  Google Scholar 

  203. J. Bernhard, and K. Schönning, Test of OZI violation in vector meson production with COMPASS, arXiv: 1109.0272v2 (2011)

  204. J. Bernhard, Exclusive vector meson production in pp collisions at the COMPASS experiment, Ph. D. Thesis, University of Mainz, 2014

  205. T. Schlüter, The exotic \(\eta {\pi ^ -}\) wave in 190 \({\rm{GeV}}\,\,\pi - p \to \pi - {\eta ^\prime}p\) at COMPASS, arXiv: 1108.6191v2 (2011)

  206. T. Schlüter, The \(\pi - \eta \) and \(\pi - {\eta ^\prime}\) systems in exclusive 190 GeV/c \(\pi - {\rm{p}}\) Reactions at COMPASS, Ph. D. Thesis, Univ. München, 2012

  207. J. Bernhard, J. M. Friedrich, T. Schlüter, and K. Schönning, Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.2349 (2012)

  208. E. van Beveren, and G. Rupp, First indications of the existence of a 38 MeV light scalar boson arXiv: 1102.1863 (2011)

  209. E. van Beveren, and G. Rupp, Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)

  210. E. van Beveren and G. Rupp, Reply to Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.3287 (2012)

  211. E. van Beveren and G. Rupp, Z0(57) and E(38): possible surprises in the Standard Model, arXiv: 2005.08559 (2020) (accepted for publication in Acta Physica Polonica B Proc. Suppl.)

  212. C. Y. Wong, Shells in a simple anisotropic harmonic oscillator, Phys. Lett. B 14(8), 668 (1970)

    Article  ADS  Google Scholar 

  213. C. Y. Wong, Interaction barrier in charged-particle nuclear reactions, Phys. Rev. Lett. 31(12), 766 (1973)

    Article  ADS  Google Scholar 

  214. T. G. Lee, O. Bayrak, and C. Y. Wong, Pocket resonances in low-energy antineutrons reactions with nuclei, Phys. Lett. B 817, 136301 (2021), arXiv: 2102.06691

    Article  Google Scholar 

  215. J. A. Wheeler, Molecular viewpoints in nuclear structure, Phys. Rev. 52(11), 1083 (1937)

    Article  MATH  ADS  Google Scholar 

  216. D. R. Tilley and H. R. Weller, Energy levels of light nuclei A=4, Nucl. Phys. A 541, 1 (1992)

    Article  ADS  Google Scholar 

  217. D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. Purcell, C. G. Sheu, and H. R. Weller, Energy levels of light nuclei, Nucl. Phys. A 745(3–4), 155 (2004)

    Article  ADS  Google Scholar 

  218. J. L. Feng, T. M. P. Tait, and C. B. Verharen, Dynamical evidence for a fifth force explanation of the ATOMKI nuclear anomalies, Phys. Rev. D 102(3), 036016 (2020)

    Article  ADS  Google Scholar 

  219. W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Dipole oscillation modes in light alpha-clustering nuclei, Phys. Rev. C 94(1), 014301 (2016), arXiv: 1602.08955

    Article  ADS  Google Scholar 

  220. B. L. Berman and S. C. Fultz, Measurements of the giant dipole resonance with monoenergetic photons, Rev. Mod. Phys. 47(3), 713 (1975)

    Article  ADS  Google Scholar 

  221. J. H. Kelley, J. E. Purcell, and C. G. Sheu, Energy levels of light nuclei A = 12, Nucl. Phys. A 968, 71 (2017)

    Article  ADS  Google Scholar 

  222. L. D. Landau, The moment of a 2-photon system, Dokl. Akad. Nauk SSSR 60, 207 (1948)

    Google Scholar 

  223. C. N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77(2), 242 (1950)

    Article  MATH  ADS  Google Scholar 

  224. E. van Beveren and G. Rupp, First indications of the existence of a 38 MeV light scalar boson, arXiv: 1102.1863 (2011)

  225. E. van Beveren and G. Rupp, Material evidence of a 38 MeVboson, arXiv: 1202.1739 (2012)

  226. E. Guido (BaBar Collaboration), Lepton universality test in Upsilon(1S) decays at BABAR, Proceedings of the DPF-2009 Conference, Detroit, MI, July 27–31, 2009, arXiv: 0910.0423

  227. A. Bauswein, N. U. F. Bastian, D. Blaschke, K. Chatziioannou, J. A. Clark, T. Fischer, and M. Oertel, Identifying a first-order phase transition in neutronstar mergers through gravitational waves, Phys. Rev. Lett. 122(6), 061102 (2019)

    Article  ADS  Google Scholar 

  228. A. Bauswein, S. Blacker, V. Vijayan, N. Stergioulas, K. Chatziioannou, J. A. Clark, N. U. F. Bastian, D. B. Blaschke, M. Cierniak, and T. Fischer, Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers, Phys. Rev. Lett. 125(14), 141103 (2020)

    Article  ADS  Google Scholar 

  229. L. R. Weih, M. Hanauske, and L. Rezzolla, Postmerger gravitational-wave signatures of phase transitions in binary mergers, Phys. Rev. Lett. 124(17), 171103 (2020)

    Article  ADS  Google Scholar 

  230. E. Annala, T. Gorda, A. Kurkela, J. Naettilae, and A. Vuorinen, Evidence for quark-matter cores in massive neutron stars, Nat. Phys. 16(9), 907 (2020)

    Article  Google Scholar 

  231. R. Barate, et al. (ALPEPH Collaboration), Inclusive production of neutral pions in hadronic 2 decays, 2. Phys. C 74, 451 (1997)

    Article  Google Scholar 

  232. C. Amsler, et al. (Particle Data Group), Review of particle physics, Phys. Lett. B 667(1–5), 1 (2008)

    Article  ADS  Google Scholar 

  233. V. M. Aulchenko, et al. (CMD-2 Collaboration), Measurement of the pion form factor in the range 1.04–1.38 GeV with the CMD-2 detector, JETP Lett. 82(12), 743 (2005) (Pisma 2h. Eksp. Teor. Fiz. 82, 841 (2005), arXiv: hep-ex/0603021

    Article  ADS  Google Scholar 

  234. T. Aaltonen, et al. (CDF Collaboration), Precision measurement of the X(3872) mass in \(J/\psi \,{\pi ^ +}{\pi ^ -}\) decays, Phys. Rev. Lett. 103, 152001 (2009), arXiv: 0906.5218

    Article  ADS  Google Scholar 

  235. B. Aubert, et al. (BarBar Collaboration), Study of hadronic transitions between \(\Upsilon (4{\rm{S}}) \to \eta \Upsilon (1{\rm{S}})\) states and observation of \(\Upsilon (4{\rm{S}}) \to \eta \Upsilon (1{\rm{S}})\) decay, Phys. Rev. D 78, 112002 (2008), arXiv: 0807.2014

    Article  ADS  Google Scholar 

  236. E. F. Taylor and J. A. Wheeler, Space-time Physics, W. H. Freeman and Co., 2nd Ed., 1992, page 20

  237. C. N. Yang, Charge quantization, compactness of the gauge group, and flux quantization, Phys. Rev. D 8(8), 2360 (1970)

    Article  ADS  Google Scholar 

  238. A. C. Hayes, J. Friar, G. M. Hale, and G. T. Garvey, Angular correlations in the \({e^ +}{e^ -}\) decay of excited states in 8Be, Phys. Rev. C 105(5), 055502 (2022), arXiv: 2106.06834

    Article  ADS  Google Scholar 

  239. M. Lüscher, Symmetry breaking aspects of the roughening transition in gauge theories, Nucl. Phys. B 180(2), 317 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  240. M. Lüscher, K. Symanzik, and P. Weisz, Anomalies of the free loop wave equation in the WKB approximation, Nucl. Phys. B 173(3), 365 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  241. J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67(13), 1681 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  242. C. Bonati, M. Caselle, and S. Morlacchi, The unreasonable effectiveness of effective string theory: The case of the 3D SU (2) Higgs model, Phys. Rev. D 104(5), 054501 (2021), arXiv: 2106.08784

    Article  MathSciNet  ADS  Google Scholar 

  243. M. Billo, M. Caselle, and R. Pellegrini, New numerical results and novel effective string predictions for Wilson loops, J. High Energy Phys. 01(1), 104 (2012) [Erratum: J. High Energy Phys. 04, 097 (2013)], arXiv: 1107.4356

    Article  MATH  ADS  Google Scholar 

  244. M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, J. High Energy Phys. 0407, 014 (2004), arXiv: hep-th/0406205

    Article  MathSciNet  ADS  Google Scholar 

  245. M. Billo and M. Caselle, Polyakov loop correlators from D0-brane interactions in bosonic string theory, J. High Energy Phys. 0507, 038 (2005), arXiv: hep-th/ 0505201

    Article  MathSciNet  ADS  Google Scholar 

  246. M. Billo, M. Caselle, and L. Ferro, The partition function of interfaces from the Nambu-Goto effective string theory, J. High Energy Phys. 0602, 070 (2006), arXiv: hep-th/0601191

    Article  MathSciNet  ADS  Google Scholar 

  247. H. Georgi, Unparticle physics, Phys. Rev. Lett. 98(22), 221601 (2007)

    Article  ADS  Google Scholar 

  248. H. Georgi and Y. Kats, Unparticle examples in 2D, Phys. Rev. Lett. 101(13), 131603 (2008)

    Article  ADS  Google Scholar 

  249. S. Hellerman, S. Maeda, J. Maltz, and I. Swanson, Effective string theory simplified, J. High Energy Phys. 09(9), 183 (2014), arXiv: 1405.6197

    Article  MathSciNet  MATH  ADS  Google Scholar 

  250. O. Aharony and Z. Komargodski, The effective theory of long strings, J. High Energy Phys. 05(5), 118 (2013), arXiv: 1302.6257

    Article  MathSciNet  MATH  ADS  Google Scholar 

  251. E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. B. Lane, and T. M. Yan, Spectrum of charmed quark–antiquark bound states, Phys. Rev. Lett. 34(6), 369 (1975)

    Article  ADS  Google Scholar 

  252. H. W. Crater, J. H. Yoon, and C. Y. Wong, Singularity structures in Coulomb-type potentials in two body Dirac equations of constraint dynamics, Phys. Rev. D 79(3), 034011 (2009), arXiv: 0811.0732

    Article  ADS  Google Scholar 

  253. M. Peshkin, Short distance analysis for heavy quark systems. 1. Diagrammatics, Nucl. Phys. B 156(3), 365 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  254. G. Bhanot and M. Peshkin, Short distance analysis for heavy quark systems. 2. Applications, Nucl. Phys. B 156(3), 391 (1979)

    Article  ADS  Google Scholar 

  255. S. K. Choi, et al., Observation of a narrow charmo-nium-like state in exclusive \({{\rm{B}}^ \pm} \to {{\rm{K}}^ \pm}{\pi ^ +}{\pi ^ -}\,\,J/\psi \) decays, Phys. Rev. Lett. 91, 262001 (2003)

    Article  ADS  Google Scholar 

  256. C. Y. Wong, Molecular states of heavy quark mesons, Phys. Rev. C 69(5), 055202 (2004), arXiv: hep-ph/ 0311088

    Article  ADS  Google Scholar 

  257. N. A. Tornqvist, Isospin breaking of the narrow char-monium state of Belle at 3872 MeV as a deuson, Phys. Lett. B 590(3–4), 209 (2004)

    Article  ADS  Google Scholar 

  258. F. E. Close and P. R. Page, The D*0D0 threshold resonance, Phys. Lett. B 578(1–2), 119 (2004)

    Article  ADS  Google Scholar 

  259. S. Pakvasa and M. Suzuki, On the hidden charm state at 3872 MeV, Phys. Lett. B 579(1–2), 67 (2004)

    Article  ADS  Google Scholar 

  260. E. S. Swanson, Diagnostic decays of the X(3872), Phys. Lett. B 598(3–4), 197 (2004)

    Article  ADS  Google Scholar 

  261. M. B. Voloshin, Interference and binding effects in decays of possible molecular component of X(3872), Phys. Lett. B 579(3–4), 316 (2004)

    Article  ADS  Google Scholar 

  262. F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94(2), 029901 (2022)], arXiv: 1705.00141

    Article  ADS  Google Scholar 

  263. B. Yang, L. Meng, and S. L. Zhu, Possible molecular states composed of doubly charmed baryons with coupled-channel effect, Eur. Phys. J. A 56(2), 67 (2020), arXiv: 1906.04956

    Article  ADS  Google Scholar 

  264. X. K. Dong, F. K. Guo, and B. S. Zou, A survey of heavy–antiheavy hadronic molecules, Progr. Phys. 41(2), 65 (2021), arXiv: 2101.01021

    Google Scholar 

  265. S. Q. Luo, T. W. Wu, M. Z. Liu, L. S. Geng, and X. Liu, Triple-charm molecular states composed of D D D and D*D*D*, Phys. Rev. D 105(7), 074033 (2022), arXiv: 2111.15079

    Article  ADS  Google Scholar 

  266. P. Adlarson, et al. (WASA-at-COSY Collaboration and SAID Data Analysis Center), Evidence for a new resonance from polarized neutron-proton scattering, Phys. Rev. Lett. 112(20), 202301 (2014)

    Article  ADS  Google Scholar 

  267. P. Adlarson, et al., Neutron–proton scattering in the context of the d* (2380) resonance, Phys. Rev. C 90(3), 035204 (2014)

    Article  ADS  Google Scholar 

  268. R. Workman, Poles in the SAID NN analysis, EPJ Web Conf. 81, 02023 (2014)

    Article  Google Scholar 

  269. R. L. Workman, W. J. Briscoe, and I. I. Strakovsky, Sensitivity of the COSY dibaryon candidate to np elastic scattering measurements, Phys. Rev. C 93(4), 045201 (2016)

    Article  ADS  Google Scholar 

  270. M. Bashkanov, S. J. Brodsky, and H. Clement, Novel six-quark hidden-color dibaryon states in QCD, Phys. Lett. B 727(4–5), 438 (2013)

    Article  ADS  Google Scholar 

  271. T. Goldman, K. Maltman, G. J. Stephenson, K. E. Schmidt, and F. Wang, “Inevitable” nonstrange dibaryon, Phys. Rev. C 39(5), 1889 (1989)

    Article  ADS  Google Scholar 

  272. J. L. Ping, H. X. Huang, H. R. Pang, F. Wang, and C. W. Wong, Quark models of dibaryon resonances in nucleon–nucleon scattering, Phys. Rev. C 79(2), 024001 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is indebted to Prof. V. F. Perepelitsa whose talk at the International Symposium on Multiparticle Dynamics, in 2009 introduced the author to the subject of anomalous soft photons which raised author’s interest on the question of quark confinement in the QED interaction. The author would like to thank Profs. Y. Jack Ng, A. Koshelkin, H. Sazdjian, Soren Sorensen, D. Blaschke, Kh. U. Abraamyan, Gang Wang, Xi-Guang Cao, G. Wilk, Y. Sharon, L. Zamick, and I-Yang Lee for helpful communications. The research was supported in part by the Division of Nuclear Physics, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheuk-Yin Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, CY. On the question of quark confinement in the Abelian U(1) QED gauge interaction. Front. Phys. 18, 64401 (2023). https://doi.org/10.1007/s11467-023-1288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1288-0

Keywords

Navigation