Skip to main content
Log in

Simulation of EOM-based frequency-chirped laser slowing of MgF radicals

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Here we propose a scheme to slow MgF molecules by using EOM-based frequency-chirped radiation pressure slowing. The scheme well addresses the need for a rapid chirp rate while light molecules are being laser slowed, whose scattering rate and recoil velocity are large. Two EOMs are used to compensate the rapidly changing Doppler shifts arised from the movement of molecules, and to cover the hyperfine energy structure of MgF, respectively. Based the scattering rate maps calculated from an optical Bloch equation model, individual molecule trajectories are simulated by using a semi-classical three-dimensional Monte Carlo approach. We show how the modulation configuration of EOM and the magnetic field influence the slowing results. The study shows that a cryogenic buffer gas-cooled MgF beam source is possible to be slowed down with a number of ∼ 1.4 × 106−107, and the final forward speed peaks at ∼ 10 m/s near the capture velocity of a molecular MOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Editorial: Quo vadis, cold molecules? Eur. Phys. J. D 31(2), 149 (2004)

    Article  ADS  Google Scholar 

  2. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)

    Article  ADS  Google Scholar 

  3. The ACME Collaboration, J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)

    Article  ADS  Google Scholar 

  4. J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473(7348), 493 (2011)

    Article  ADS  Google Scholar 

  5. S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)

    Article  ADS  Google Scholar 

  6. D. S. Jin and J. Ye, Introduction to ultracold molecules: New frontiers in quantum and chemical physics, Chem. Rev. 112(9), 4801 (2012)

    Article  Google Scholar 

  7. D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)

    Article  ADS  Google Scholar 

  8. A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators, Nat. Phys. 2(9), 636 (2006)

    Article  Google Scholar 

  9. P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)

    Article  ADS  Google Scholar 

  10. A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)

    Article  Google Scholar 

  11. D. Wang, M. D. Lukin, and E. Demler, Quantum fluids of self-assembled chains of polar molecules, Phys. Rev. Lett. 97(18), 180413 (2006)

    Article  ADS  Google Scholar 

  12. B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)

    Article  ADS  Google Scholar 

  13. Y. Liu and L. Luo, Molecular collisions: From near-cold to ultra-cold, Front. Phys. 16(4), 42300 (2021)

    Article  ADS  Google Scholar 

  14. E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)

    Article  ADS  Google Scholar 

  15. E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)

    Article  ADS  Google Scholar 

  16. M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)

    Article  ADS  Google Scholar 

  17. A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magneto-optical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 213201 (2018)

    Article  ADS  Google Scholar 

  18. L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)

    Article  ADS  Google Scholar 

  19. I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, and J. M. Doyle, Sisyphus laser cooling of a polyatomic molecule, Phys. Rev. Lett. 118(17), 173201 (2017)

    Article  ADS  Google Scholar 

  20. H. J. Williams, L. Caldwell, N. J. Fitch, S. Truppe, J. Rodewald, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)

    Article  ADS  Google Scholar 

  21. L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)

    Article  Google Scholar 

  22. S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)

    Article  Google Scholar 

  23. L. W. Cheuk, L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, and J. M. Doyle, A-enhanced imaging of molecules in an optical trap, Phys. Rev. Lett. 121(8), 083201 (2018)

    Article  ADS  Google Scholar 

  24. L. Caldwell, J. A. Devlin, H. J. Williams, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)

    Article  ADS  Google Scholar 

  25. H. Son, J. J. Park, W. Ketterle, and A. O. Jamison, Collisional cooling of ultracold molecules, Nature 580(7802), 197 (2020)

    Article  ADS  Google Scholar 

  26. S. A. Malinovskaya, Laser cooling using adiabatic rapid passage, Front. Phys. 16(5), 52601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  27. Q. Liang, T. Chen, W. Bu, Y. Zhang, and B. Yan, Laser cooling with adiabatic passage for type-ii transitions, Front. Phys. 16(3), 32501 (2021)

    Article  ADS  Google Scholar 

  28. R. L. McNally, I. Kozyryev, S. Vazquez-Carson, K. Wenz, T. Wang, and T. Zelevinsky, Optical cycling, radiative deflection and laser cooling of barium monohydride (138Ba1H), New J. Phys. 22(8), 083047 (2020)

    Article  ADS  Google Scholar 

  29. J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)

    Article  ADS  Google Scholar 

  30. T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)

    Article  ADS  Google Scholar 

  31. P. Aggarwal, H. L. Bethlem, A. Borschevsky, M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann, T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Willmann, and A. Zapara, Measuring the electric dipole moment of the electron in BaF, Eur. Phys. J. D 72(11), 197 (2018)

    Article  ADS  Google Scholar 

  32. R. Albrecht, M. Scharwaechter, T. Sixt, L. Hofer, and T. Langen, Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules, Phys. Rev. A 101(1), 013413 (2020)

    Article  ADS  Google Scholar 

  33. S. Hofsäss, M. Doppelbauer, S. C. Wright, S. Kray, B. G. Sartakov, J. Pérez-Ríos, G. Meijer, and S. Truppe, Optical cycling of AlF molecules, New J. Phys. 23(7), 075001 (2021)

    Article  ADS  Google Scholar 

  34. M. Xia, R. Gu, K. Yan, D. Wu, L. Xu, Y. Xia, and J. Yin, Destabilization of dark states in MgF molecules, Phys. Rev. A 103(1), 013321 (2021)

    Article  ADS  Google Scholar 

  35. M. R. Tarbutt and T. C. Steimle, Modeling magnetooptical trapping of CaF molecules, Phys. Rev. A 92(5), 053401 (2015)

    Article  ADS  Google Scholar 

  36. H. J. Williams, S. Truppe, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Characteristics of a magneto-optical trap of molecules, New J. Phys. 19(11), 113035 (2017)

    Article  ADS  Google Scholar 

  37. S. Truppe, H. J. Williams, N. J. Fitch, M. Hambach, T. E. Wall, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing, New J. Phys. 19(2), 022001 (2017)

    Article  ADS  Google Scholar 

  38. J. F. Barry, E. S. Shuman, E. B. Norrgard, and D. DeMille, Laser radiation pressure slowing of a molecular beam, Phys. Rev. Lett. 108(10), 103002 (2012)

    Article  ADS  Google Scholar 

  39. B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular mot, J. Phys. B 49(17), 174001 (2016)

    Article  ADS  Google Scholar 

  40. V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)

    Article  ADS  Google Scholar 

  41. M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)

    Article  ADS  Google Scholar 

  42. M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)

    Article  ADS  Google Scholar 

  43. P. Kaebert, M. Stepanova, T. Poll, M. Petzold, S. Xu, M. Siercke, and S. Ospelkaus, Characterizing the zeeman slowing force for 40Ca19F molecules, New J. Phys. 23(9), 093013 (2021)

    Article  ADS  Google Scholar 

  44. C. C. Bradley, J. G. Story, J. J. Tollett, J. Chen, N. W. M. Ritchie, and R. G. Hulet, Laser cooling of lithium using relay chirp cooling, Opt. Lett. 17(5), 349 (1992)

    Article  ADS  Google Scholar 

  45. B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)

    Article  ADS  Google Scholar 

  46. L. Xu, Y. Yin, B. Wei, Y. Xia, and J. Yin, Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magnetooptical trapping, Phys. Rev. A 93(1), 013408 (2016)

    Article  ADS  Google Scholar 

  47. K. Yan, B. Wei, Y. Yin, S. Xu, L. Xu, M. Xia, R. Gu, Y. Xia, and J. Yin, A new route for laser cooling and trapping of cold molecules: Intensity-gradient cooling of MgF molecules using localized hollow beams, New J. Phys. 22(3), 033003 (2020)

    Article  ADS  Google Scholar 

  48. N. R. Hutzler, H. I. Lu, and J. M. Doyle, The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chem. Rev. 112(9), 4803 (2012)

    Article  Google Scholar 

  49. J. F. Barry, E. S. Shuman, and D. DeMille, A bright, slow cryogenic molecular beam source for free radicals, Phys. Chem. Chem. Phys. 13(42), 18936 (2011)

    Article  Google Scholar 

  50. N. E. Bulleid, S. M. Skoff, R. J. Hendricks, B. E. Sauer, E. A. Hinds, and M. R. Tarbutt, Characterization of a cryogenic beam source for atoms and molecules, Phys. Chem. Chem. Phys. 15(29), 12299 (2013)

    Article  Google Scholar 

  51. D. J. Berkeland and M. G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman degenerate atomic systems, Phys. Rev. A 65(3), 033413 (2002)

    Article  ADS  Google Scholar 

  52. E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)

    Article  ADS  Google Scholar 

  53. N. J. Fitch and M. R. Tarbutt, Laser cooled molecules, arXiv: 2103.00968 (2021)

  54. B. Klöter, C. Weber, D. Haubrich, D. Meschede, and H. Metcalf, Laser cooling of an indium atomic beam enabled by magnetic fields, Phys. Rev. A 77(3), 033402 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial supports are from the National Natural Science Foundation of China under Grant Nos. 11834003, 91836103, and 91536218.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Xia or Jianping Yin.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1137-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Gu, R., Wu, D. et al. Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys. 17, 42502 (2022). https://doi.org/10.1007/s11467-021-1137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1137-y

Keywords

Navigation