Skip to main content
Log in

Tuning the magnetic and electronic properties of strontium titanate by carbon doping

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiCO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C-C dimer pair accompanied by stronger C-C and weaker C-Ti hybridizations as the C-C distance becomes smaller. As the C-C distance increases, C-doped SrTiCO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, and L. W. Martin, Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiCO3 thin films, Chem. Mater. 24(2), 331 (2012)

    Article  Google Scholar 

  2. B. Luo, X. Wang, E. Tian, G. Li, and L. Li, Electronic structure, optical and dielectric proper-ties of BaTiO3/SrTiO3/CaTiO3 ferroelectric superlattices from first-principles calculations, J. Mater. Chem. C 3(33), 8625 (2015)

    Article  Google Scholar 

  3. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiCO3 single crystals, J. Appl. Phys. 97(3), 034106 (2005)

    Article  ADS  Google Scholar 

  4. K. L. Zhao, D. Chen, and D. X. Li, Effects of N adsorption on the structural and electronic properties of SrTiO3(001) surface, Appl. Surf. Sci. 256(21), 6262 (2010)

    Article  ADS  Google Scholar 

  5. B. Modak and S. K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: A hybrid density functional study, J. Phys. Chem. C 119(41), 23503 (2015)

    Article  Google Scholar 

  6. F. Yang, Y. Liang, L. X. Liu, Q. Zhu, W. H. Wang, X. T. Zhu, and J. D. Guo, Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy, Front. Phys. 13(5), 136802 (2018)

    Article  Google Scholar 

  7. E. Guo, H. Lü, K. Jin, and G. Yang, Ultrafast photoelectric effects and high-sensitive photo-voltages in perovskite oxides and heterojunctions, Front. Phys. China 5(2), 176 (2010)

    Article  ADS  Google Scholar 

  8. B. Modak, and S. K. Ghosh, Exploring the role of La codoping beyond charge compensation for enhanced hydrogen evolution by Rh-SrTiO3, J. Phys. Chem. B 119(34), 11089 (2015)

    Article  Google Scholar 

  9. B. Modak, K. Srinivasu, and S. K. Ghosh, A hybrid DFT based investigation of the photocat-alytic activity of cation-anion codoped SrTiO3 for water splitting under visible light, Phys. Chem. Chem. Phys. 16(44), 24527 (2014)

    Article  Google Scholar 

  10. W. Wei, Y. Dai, M. Guo, L. Yu, H. Jin, S. Han, and B. Huang, Codoping synergistic effects in N-doped SrTiO3 for higher energy conversion efficiency, Phys. Chem. Chem. Phys. 12(27), 7612 (2010)

    Article  Google Scholar 

  11. T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, and K. Domen, Photocatalytic water splitting with a quantum efficiency of almost unity, Nature 581(7809), 411 (2020)

    Article  ADS  Google Scholar 

  12. W. Zhang, A. R. Mohamed, and W. J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Ed. 10, 1002 (2020)

    Google Scholar 

  13. M. Humayun, L. Xu, L. Zhou, Z. Zheng, Q. Fu, and W. Luo, Exceptional co-catalyst free ph-otocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution, Nano Res. 11(12), 6391 (2018)

    Article  Google Scholar 

  14. W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Structural and electronic properties of n-doped and p-doped Sr-TiO3, Phys. Rev. B 70(21), 214109 (2004)

    Article  ADS  Google Scholar 

  15. J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, and J. Maier, First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3, Phys. Rev. B 73(6), 064106 (2006)

    Article  ADS  Google Scholar 

  16. M. Rizwan, A. Ali, Z. Usman, N. R. Khalid, H. B. Jin, and C. B. Cao, Structural, electronic and optical properties of copper-doped SrTiO3 perovskite: A DFT study, Physica B 552, 52 (2019)

    Article  ADS  Google Scholar 

  17. K. Yang, Y. Dai, and B. Huang, First-principles characterization of ferromagnetism in N-doped SrTiO3 and BaTiO3, Appl. Phys. Lett. 100(6), 062409 (2012)

    Article  ADS  Google Scholar 

  18. X. L. Dong, K. H. Zhang, and M. X. Xue, First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M = Cr, Mn, Fe, Co, or Ni), Front. Phys. 13(5), 137106 (2018)

    Article  ADS  Google Scholar 

  19. H. F. Liu, Effect of nitrogen and carbon doping on electronic properties of SrTiCO3, Solid State Commun. 152(22), 2063 (2012)

    Article  ADS  Google Scholar 

  20. C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, Effect of non-metal elements (B,C,N,F,P,S) mono-doping as anions on electronic structure of SrTiO3, Comput. Mater. Sci. 79, 69 (2013)

    Article  Google Scholar 

  21. A. Shkabko, M. H. Aguirre, A. Kumar, Y. Kim, S. Jesse, R. Waser, S. V. Kalinin, and A. Weidenkaff, Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N, Nanotechnology 24(47), 475701 (2013)

    Article  ADS  Google Scholar 

  22. W. Akbar, T. Liaqat, I. Elahi, M. Zulfiqar, and S. Nazir, Modulated electronic and magnetic properties of 3d TM-doped SrTiO3: DFT+U study, J. Magn. Magn. Mater. 500, 166325 (2020)

    Article  Google Scholar 

  23. C. Adessi, S. Thébaud, R. Bouzerar, and G. Bouzerar, Ab initio investigation of the role of vanadium impurity states in SrTiO3 for thermoelectricity, J. Phys. Chem. Solids 138, 138 (2020)

    Article  Google Scholar 

  24. W. J. Yin, H. Tang, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2, Phys. Rev. B 82(4), 045106 (2010)

    Article  ADS  Google Scholar 

  25. Y. Gai, J. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approachfor enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)

    Article  ADS  Google Scholar 

  26. W. Zhu, X. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. Weitering, G. Gu, # Eres, and Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)

    Article  ADS  Google Scholar 

  27. J. Liu, L. Wang, J. Liu, T. Wang, W. Qu, and Z. Li, DFT study on electronic structures and optical absorption properties of C, S cation-doped SrTiO3, Cent. Eur. J. Phys. 7(4), 762 (2009)

    Google Scholar 

  28. T. Shen, C. Hu, H. L. Dai, W. L. Yang, H. C. Liu, C. L. Tan, and X. L. Wei, First principles calculations of magnetic, electronic and optical properties of (Mn-Fe) co-doped SrTiO3, Optik (Stuttg.) 127(5), 3055 (2015)

    Article  Google Scholar 

  29. C. W. Chang and C. Hu, Graphene oxide-derived carbon-doped SrTiO3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation, Chem. Eng. J. 383, 123116 (2020)

    Article  ADS  Google Scholar 

  30. V. V. Bannikov, I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3, J. Magn. Magn. Mater. 320(6), 936 (2008)

    Article  ADS  Google Scholar 

  31. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 169 (1996)

    Article  Google Scholar 

  32. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  33. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  35. K. Yang, Y. Dai, B. Huang, and Y. P. Feng, First-principles GGA + U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2, J. Phys. D Appl. Phys. 47(27), 275101 (2014)

    Article  Google Scholar 

  36. S. Nazir, M. Behtash, and K. Yang, Enhancing interfacial conductivity and spatial charge confinement of LaA1O3/SrTiO3 heterostructures via strain engineering, Appl. Phys. Lett. 105(14), 141602 (2014)

    Article  ADS  Google Scholar 

  37. S. Nazir, M. Behtash, and K. Yang, The role of uniaxial strain in tailoring the interfacial pro-perties of LaAlO3/SrTiO3 heterostructure, RSC Advances 5(20), 15682 (2015)

    Article  ADS  Google Scholar 

  38. H. Guo, Y. Zhao, N. Lu, E. Kan, X. C. Zeng, X. Wu, and J. Yang, Tunable magnetism in a nonmetal-substituted ZnO monolayer: A first-principles study, J. Phys. Chem. C 116(20), 11336 (2012)

    Article  Google Scholar 

  39. D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA + U study, Phys. Rev. Lett. 98(11), 115503 (2007)

    Article  ADS  Google Scholar 

  40. P. Sikam, P. Moontragoon, C. Sararat, A. Karaphun, E. Swatsitang, S. Pinitsoontorn, and P. Thongbai, DFT calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO3, Appl. Surf. Sci. 446, 92 (2018)

    Article  ADS  Google Scholar 

  41. X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the structural, electronic, and magnetic properties of strontium titanate through atomic design: A comparison between oxygen vacancies and nitrogen doping, J. Am. Ceram. Soc. 96(2), 538 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (Grant No. 11704317) and supported by the Xiamen University Malaysia Research Fund (Grant No. XMUMRF/2019-C3/IORI/0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Qiong Wang or Jin-Cheng Zheng.

Additional information

arXiv: 2012.10963. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/sll467-020-1034-9.

Supplemental Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Wu, M., Wang, HQ. et al. Tuning the magnetic and electronic properties of strontium titanate by carbon doping. Front. Phys. 16, 43501 (2021). https://doi.org/10.1007/s11467-020-1034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1034-9

Keywords

Navigation