Skip to main content
Log in

The delay time of gravitational wave — gamma-ray burst associations

  • Mini-Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding medium, Δtbo; and the time for the jet to reach the energy dissipation and GRB emission site, ΔtGRB. For CBC-sGRB associations, Δtjet and Δtbo are correlated, and the final delay can be from 10 ms to a few seconds. For GWB-lGRB associations, Δtjet and Δtbo are independent. The latter is at least ∼10 s, so that Δt of these associations is at least this long. For certain jet launching mechanisms of lGRBs, Δt can be minutes or even hours long due to the extended engine waiting time to launch a jet. We discuss the cases of GW170817/GRB 170817A and GW150914/GW150914-GBM within this theoretical framework and suggest that the delay times of future GW/GRB associations will shed light into the jet launching mechanisms of GRBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)

    Article  ADS  Google Scholar 

  2. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848(2), L13 (2017)

    Article  ADS  Google Scholar 

  3. A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J. 848(2), L14 (2017)

    Article  ADS  Google Scholar 

  4. B. B. Zhang, B. Zhang, H. Sun, W. H. Lei, H. Gao, Y. Li, L. Shao, Y. Zhao, Y. D. Hu, H. J. Lü, X. F. Wu, X. L. Fan, G. Wang, A. J. Castro-Tirado, S. Zhang, B. Y. Yu, Y. Y. Cao, and E. W. Liang, A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor, Nat. Commun. 9(1), 447 (2018)

    Article  ADS  Google Scholar 

  5. V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, et al., Fermi GBM observations of LIGO gravitational-wave event GW150914, Astrophys. J. 826(1), L6 (2016)

    Article  ADS  Google Scholar 

  6. V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, et al., On the interpretation of the Fermi-GBM transient observed in coincidence with LIGO gravitational-wave event GW150914, Astrophys. J. 853(1), L9 (2018)

    Article  ADS  Google Scholar 

  7. J. Greiner, J. M. Burgess, V. Savchenko, and H. F. Yu, On the Fermi-GBM event 0.4 s after GW150914, Astrophys. J. 827(2), L38 (2016)

    Article  ADS  Google Scholar 

  8. M. Shibata, K. Kyutoku, T. Yamamoto, and K. Taniguchi, Gravitational waves from black hole-neutron star binaries: Classification of waveforms, Phys. Rev. D 79(4), 044030 (2009)

    Article  ADS  Google Scholar 

  9. S. Kobayashi and P. Mészáros, Gravitational radiation from gamma-ray burst progenitors, Astrophys. J. 589(2), 861 (2003)

    Article  ADS  Google Scholar 

  10. J.-J. Wei, B.-B. Zhang, X.-F. Wu, H. Gao, P. Mészáros, B. Zhang, Z.-G. Dai, S.-N. Zhang, and Z.-H. Zhu, Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, J. Cosmol. Astropart. Phys. 2017(11), 035 (2017)

    Article  Google Scholar 

  11. I. M. Shoemaker and K. Murase, Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A, Phys. Rev. D 97(8), 083013 (2018)

    Article  ADS  Google Scholar 

  12. B. Zhang, The Physics of Gamma-Ray Bursts, Cambridge: Cambridge University Press, 2018

    Book  Google Scholar 

  13. J. Granot, D. Guetta, and R. Gill, Lessons from the short GRB 170817A: The first gravitational-wave detection of a binary neutron star merger, Astrophys. J. 850(2), L24 (2017)

    Article  ADS  Google Scholar 

  14. P. Veres, P. Mészáros, A. Goldstein, N. Fraija, V. Connaughton, E. Burns, R. D. Preece, R. Hamburg, C. A. Wilson-Hodge, M. S. Briggs, and D. Kocevski, Gamma-ray burst models in light of the GRB 170817A-GW170817 connection, arXiv: 1802.07328 (2018)

  15. D. B. Lin, T. Liu, J. Lin, X. G. Wang, W. M. Gu, and E. W. Liang, First electromagnetic pulse associated with a gravitational-wave event: Profile, duration, and delay, Astrophys. J. 856(2), 90 (2018)

    Article  ADS  Google Scholar 

  16. O. S. Salafia, G. Ghisellini, G. Ghirlanda, and M. Colpi, Interpreting GRB170817A as a giant flare from a jet-less double neutron star merger, Astron. Astrophys. 619, A18 (2018)

    Article  ADS  Google Scholar 

  17. Y. Z. Qian and S. E. Woosley, Nucleosynthesis in neutrino-driven winds (I): The physical conditions, Astrophys. J. 471(1), 331 (1996)

    Article  ADS  Google Scholar 

  18. W. H. Lei, B. Zhang, and E. W. Liang, Hyperaccreting black hole as gamma-ray burst central engine (I): Baryon loading in gamma-ray burst jets, Astrophys. J. 765(2), 125 (2013)

    Article  ADS  Google Scholar 

  19. B. D. Metzger, D. Giannios, T. A. Thompson, N. Bucciantini, and E. Quataert, The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc. 413(3), 2031 (2011)

    Article  ADS  Google Scholar 

  20. P. C. Duffell, E. Quataert, D. Kasen, and H. Klion, Jet dynamics in compact object mergers: GW170817 likely had a successful jet, Astrophys. J. 866(1), 3 (2018)

    Article  ADS  Google Scholar 

  21. K. P. Mooley, A. T. Deller, O. Gottlieb, E. Nakar, G. Hallinan, S. Bourke, D. A. Frail, A. Horesh, A. Corsi, and K. Hotokezaka, Superluminal motion of a relativistic jet in the neutron-star merger GW170817, Nature 561(7723), 355 (2018)

    Article  ADS  Google Scholar 

  22. G. Ghirlanda, O. S. Salafia, Z. Paragi, M. Giroletti, J. Yang, et al., Compact radio emission indicates a structured jet was produced by a binary neutron star merger, Science 363(6430), 968 (2019)

    Article  ADS  Google Scholar 

  23. M. Shibata and K. Taniguchi, Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves, Phys. Rev. D 77(8), 084015 (2008)

    Article  ADS  Google Scholar 

  24. J. J. Geng, B. Zhang, A. Kölligan, R. Kuiper, and Y. F. Huang, Propagation of a short GRB jet in the ejecta: Jet launching delay time, jet structure, and GW170817/GRB 170817A, arXiv: 1904.02326 (2019)

  25. K. Ioka and T. Nakamura, Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Prog. Theor. Exp. Phys. 2018(4), 043E02 (2018)

    Article  Google Scholar 

  26. P. Mészáros and M. J. Rees, Steep slopes and preferred breaks in gamma-ray burst spectra: The role of photospheres and comptonization, Astrophys. J. 530(1), 292 (2000)

    Article  ADS  Google Scholar 

  27. M. J. Rees and P. Mészáros, Dissipative photosphere models of gamma-ray bursts and X-ray flashes, Astrophys. J. 628(2), 847 (2005)

    Article  ADS  Google Scholar 

  28. A. Pe’er and F. Ryde, A theory of multicolor blackbody emission from relativistically expanding plasmas, Astrophys. J. 732(1), 49 (2011)

    Article  ADS  Google Scholar 

  29. M. J. Rees and P. Mészáros, Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J. 430, L93 (1994)

    Article  ADS  Google Scholar 

  30. S. Kobayashi, T. Piran, and R. Sari, Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490(1), 92 (1997)

    Article  ADS  Google Scholar 

  31. B. Zhang and H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts, Astrophys. J. 726(2), 90 (2011)

    Article  ADS  Google Scholar 

  32. Z. L. Uhm and B. Zhang, Toward an understanding of GRB prompt emission mechanism (I): The origin of spectral lags, Astrophys. J. 825(2), 97 (2016)

    Article  ADS  Google Scholar 

  33. F. Daigne and R. Mochkovitch, The expected thermal precursors of gamma-ray bursts in the internal shock model, Mon. Not. R. Astron. Soc. 336(4), 1271 (2002)

    Article  ADS  Google Scholar 

  34. A. Pe’er, P. Mészáros, and M. J. Rees, The observable effects of a photospheric component on GRB and XRF prompt emission spectrum, Astrophys. J. 642(2), 995 (2006)

    Article  ADS  Google Scholar 

  35. B. Zhang and A. Pe’er, Evidence of an initially magnetically dominated outflow in GRB 080916C, Astrophys. J. 700(2), L65 (2009)

    Article  ADS  Google Scholar 

  36. H. Gao, B. B. Zhang, and B. Zhang, Stepwise filter correlation method and evidence of superposed variability components in gamma-ray burst prompt emission light curves, Astrophys. J. 748(2), 134 (2012)

    Article  ADS  Google Scholar 

  37. B. J. Morsony, D. Lazzati, and M. C. Begelman, The origin and propagation of variability in the outflows of long-duration gamma-ray bursts, Astrophys. J. 723(1), 267 (2010)

    Article  ADS  Google Scholar 

  38. W. Deng and B. Zhang, Low energy spectral index and e p evolution of quasi-thermal photosphere emission of gamma-ray bursts, Astrophys. J. 785(2), 112 (2014)

    Article  ADS  Google Scholar 

  39. Ž. Bošnjak and F. Daigne, Spectral evolution in gamma-ray bursts: Predictions of the internal shock model and comparison to observations, Astron. Astrophys. 568, A45 (2014)

    Article  Google Scholar 

  40. Z. L. Uhm, B. Zhang, and J. Racusin, Toward an understanding of GRB prompt emission mechanism (II): Patterns of peak energy evolution and their connection to spectral lags, Astrophys. J. 869(2), 100 (2018)

    Article  ADS  Google Scholar 

  41. L. Baiotti and L. Rezzolla, Binary neutron star mergers: A review of Einstein’s richest laboratory, Rep. Prog. Phys. 80(9), 096901 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. S. Rosswog, E. Ramirez-Ruiz, and M. B. Davies, High-resolution calculations of merging neutron stars (III): Gamma-ray bursts, Mon. Not. R. Astron. Soc. 345(4), 1077 (2003)

    Article  ADS  Google Scholar 

  43. R. Ciolfi, W. Kastaun, J. Vijay Kalinani, and B. Giacomazzo, The first 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger, arXiv: 1904.10222 (2019)

  44. Z. G. Dai, X. Y. Wang, X. F. Wu, and B. Zhang, X-ray flares from postmerger millisecond pulsars, Science 311(5764), 1127 (2006)

    Article  ADS  Google Scholar 

  45. W. H. Gao and Y. Z. Fan, Short-living supermassive magnetar model for the early X-ray flares following short GRBs, Chin. J. Astron. Astrophys. 6(5), 513 (2006)

    Article  ADS  Google Scholar 

  46. B. D. Metzger, E. Quataert, and T. A. Thompson, Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down, Mon. Not. R. Astron. Soc. 385(3), 1455 (2008)

    Article  ADS  Google Scholar 

  47. A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)

    Article  ADS  Google Scholar 

  48. A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)

    Article  ADS  Google Scholar 

  49. H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. D. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)

    Article  ADS  Google Scholar 

  50. B. Zhang, Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars, Astrophys. J. 763(1), L22 (2013)

    Article  ADS  Google Scholar 

  51. H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)

    Article  ADS  Google Scholar 

  52. H. Sun, B. Zhang, and H. Gao, X-ray counterpart of gravitational waves due to binary neutron star mergers: Light curves, luminosity function, and event rate density, Astrophys. J. 835, 7 (2017)

    Article  ADS  Google Scholar 

  53. Y. Q. Xue, X. C. Zheng, Y. Li, W. N. Brandt, B. Zhang, B. Luo, B. B. Zhang, F. E. Bauer, H. Sun, B. D. Lehmer, X. F. Wu, G. Yang, X. Kong, J. Y. Li, M. Y. Sun, J. X. Wang, and F. Vito, A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger, Nature 568(7751), 198 (2019)

    Article  ADS  Google Scholar 

  54. B. Zhang and P. Mészáros, Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar, Astrophys. J. 552(1), L35 (2001)

    Article  ADS  Google Scholar 

  55. D. Zhang and Z. G. Dai, Hyperaccreting disks around magnetars for gamma-ray bursts: Effects of strong magnetic fields, Astrophys. J. 718(2), 841 (2010)

    Article  ADS  Google Scholar 

  56. C. D. Ott, The gravitational-wave signature of core-collapse supernovae, Class. Quantum Gravity 26(6), 063001 (2009)

    Article  ADS  MATH  Google Scholar 

  57. V. V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts, Nature 357(6378), 472 (1992)

    Article  ADS  Google Scholar 

  58. A. Corsi and P. Mészáros, Gamma-ray burst afterglow plateaus and gravitational waves: Multi-messenger signature of a millisecond magnetar? Astrophys. J. 702(2), 1171 (2009)

    Article  ADS  Google Scholar 

  59. T. Liu, C. Y. Lin, C. Y. Song, and A. Li, Comparison of gravitational waves from central engines of gamma-ray bursts: Neutrino-dominated accretion flows, Blandford—Znajek mechanisms, and millisecond magnetars, Astrophys. J. 850(1), 30 (2017)

    Article  ADS  Google Scholar 

  60. S. E. Woosley, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J. 405, 273 (1993)

    Article  ADS  Google Scholar 

  61. A. I. MacFadyen and S. E. Woosley, Collapsars: Gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J. 524(1), 262 (1999)

    Article  ADS  Google Scholar 

  62. A. I. MacFadyen, S. E. Woosley, and A. Heger, Supernovae, jets, and collapsars, Astrophys. J. 550(1), 410 (2001)

    Article  ADS  Google Scholar 

  63. S. E. Woosley and J. S. Bloom, The supernova-gamma-ray burst connection, Arastronomy & Astrophysics 44(1), 507 (2006)

    Article  ADS  Google Scholar 

  64. W. Kluźniak and M. Ruderman, The central engine of gamma-ray bursters, Astrophys. J. 505(2), L113 (1998)

    Article  ADS  Google Scholar 

  65. Z. G. Dai and T. Lu, γ-ray bursts and afterglows from rotating strange stars and neutron stars, Phys. Rev. Lett. 81(20), 4301 (1998)

    Article  ADS  Google Scholar 

  66. M. A. Ruderman, L. Tao, and W. Kluzniak, A central engine for cosmic gamma-ray burst sources, Astrophys. J. 542(1), 243 (2000)

    Article  ADS  Google Scholar 

  67. V. V. Usov, On the nature of non-thermal radiation from cosmological-ray bursters, Mon. Not. R. Astron. Soc. 267(4), 1035 (1994)

    Article  ADS  Google Scholar 

  68. M. M. Kasliwal, E. Nakar, L. P. Singer, D. L. Kaplan, D. O. Cook, et al., Illuminating gravitational waves: A concordant picture of photons from a neutron star merger, Science 358(6370), 1559 (2017)

    Article  ADS  Google Scholar 

  69. K. P. Mooley, E. Nakar, K. Hotokezaka, G. Hallinan, A. Corsi, et al., A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817, Nature 554(7691), 207 (2018)

    Article  ADS  Google Scholar 

  70. E. Nakar and T. Piran, Implications of the radio and X-ray emission that followed GW170817, Mon. Not. R. Astron. Soc. 478(1), 407 (2018)

    Article  ADS  Google Scholar 

  71. O. Gottlieb, E. Nakar, and T. Piran, The cocoon emission — an electromagnetic counterpart to gravitational waves from neutron star mergers, Mon. Not. R. Astron. Soc. 473(1), 576 (2018)

    Article  ADS  Google Scholar 

  72. O. Bromberg, A. Tchekhovskoy, O. Gottlieb, E. Nakar, and T. Piran, The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta, Mon. Not. R. Astron. Soc. 475(3), 2971 (2018)

    Article  ADS  Google Scholar 

  73. B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)

    Article  ADS  Google Scholar 

  74. R. Gill, A. Nathanail, and L. Rezzolla, When did the remnant of GW170817 collapse to a black hole? arXiv:1901.04138 (2019)

  75. M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)

    Article  ADS  Google Scholar 

  76. L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)

    Article  ADS  Google Scholar 

  77. A. Loeb, electromagnetic counterparts to black hole mergers detected by LIGO, Astrophys. J. 819(2), L21 (2016)

    Article  ADS  Google Scholar 

  78. S. E. Woosley, The progenitor of GW150914, Astrophys. J. 824(1), L10 (2016)

    Article  ADS  Google Scholar 

  79. L. Dai, J. C. McKinney, and M. C. Miller, Energetic constraints on electromagnetic signals from double black hole mergers, Mon. Not. R. Astron. Soc. 470(1), L92 (2017)

    Article  ADS  Google Scholar 

  80. D. D’Orazio and A. Loeb, Single progenitor model for GW150914 and GW170104, Phys. Rev. D 97(8), 083008 (2018)

    Article  ADS  Google Scholar 

  81. A. Janiuk, M. Bejger, S. Charzyński, and P. Sukova, On the possible gamma-ray burst—gravitational wave association in GW150914, New Astron. 51, 7 (2017)

    Article  ADS  Google Scholar 

  82. R. Perna, D. Lazzati, and B. Giacomazzo, Short gamma-ray bursts from the merger of two black holes, Astrophys. J. 821(1), L18 (2016)

    Article  ADS  Google Scholar 

  83. S. S. Kimura, S. Z. Takahashi, and K. Toma, Evolution of an accretion disc in binary black hole systems, Mon. Not. R. Astron. Soc. 465(4), 4406 (2017)

    Article  ADS  Google Scholar 

  84. B. Zhang, Mergers of charged black holes: Gravitational-wave events, short gamma-ray bursts, and fast radio bursts, Astrophys. J. 827(2), L31 (2016)

    Article  ADS  Google Scholar 

  85. B. Zhang, Charged compact binary coalescence signal and electromagnetic counterpart of plunging black hole—neutron star mergers, Astrophys. J. 873(2), L9 (2019)

    Article  ADS  Google Scholar 

  86. Z. G. Dai, Inspiral of a spinning black hole—magnetized neutron star binary: Increasing charge and electromagnetic emission, Astrophys. J. 873(2), L13 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Wei-Hua Lei, Robert Mochkovitch, and Bin-Bin Zhang for discussion on the origin of Δt of GW170817/GRB170817A association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B. The delay time of gravitational wave — gamma-ray burst associations. Front. Phys. 14, 64402 (2019). https://doi.org/10.1007/s11467-019-0913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0913-4

Keywords

Navigation