Skip to main content
Log in

Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In general, heavy elements contribute only to acoustic phonon modes, which are less important for the superconductivity of hydrides. However, it was revealed that the heavier elements could enhance the phonon-mediated superconductivity in ternary hydrides. In the H3S–Xe system, a novel H3SXe compound was discovered by first-principle calculations. The structural phase transitions of H3SXe under high pressures were studied. The R-3m phase of H3SXe was predicted to appear at pressures above 80 GPa, which transitions to C2/m, P-3m1, and Pm-3m phases at pressures of 90, 160, and 220 GPa, respectively. It has been anticipated that the Pm-3m-H3SXe phase with a similar structural feature as that of Im-3m-H3S is a potential high-temperature superconductor with a Tc of 89 K at 240 GPa. The Tc value of H3SXe is lower than that of H3S at high pressure. The “H3S” host lattice of Pm-3m-H3SXe is a crucial factor influencing the Tc value. The Xe atoms could accelerate the hydrogen-bond symmetrization. With the increase of the atomic number, the Tc value linearly increases in the H3S–noble-gas-element system. This indicates that the superconductivity can be modulated by changing the relative atomic mass of the noble-gas element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Mazin, Superconductivity: Extraordinarily conventional, Nature 525(7567), 40 (2015)

    Article  ADS  Google Scholar 

  2. I. Božović, A conventional conundrum, Nat. Phys. 12(1), 22 (2016)

    Article  Google Scholar 

  3. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)

    Article  ADS  Google Scholar 

  4. M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)

    Article  Google Scholar 

  5. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-T c superconductivity, Sci. Rep. 4(1), 6968 (2015)

    Article  Google Scholar 

  6. L. Ortenzi, E. Cappelluti, and L. Pietronero, Band structure and electron-phonon coupling in H3S: A tightbinding model, Phys. Rev. B 94(6), 064507 (2016)

    Article  ADS  Google Scholar 

  7. D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur, Phys. Rev. B 91(18), 184511 (2015)

    Article  ADS  Google Scholar 

  8. N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, What superconducts in sulfur hydrides under pressure and why, Phys. Rev. B 91(6), 060511 (2015)

    Article  ADS  Google Scholar 

  9. A. Bianconi and T. Jarlborg, Superconductivity above the lowest Earth temperature in pressurized sulfur hydride, EPL 112(3), 37001 (2015)

    Article  ADS  Google Scholar 

  10. Y. Quan and W. E. Pickett, Van Hove singularities and spectral smearing in high-temperature superconducting H3S, Phys. Rev. B 93(10), 104526 (2016)

    Article  ADS  Google Scholar 

  11. A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. M. Zhao, X. J. Chen, A. R. Oganov, Z. Konôpková, and V. B. Prakapenka, Hydrogen sulfide at high pressure: Change in stoichiometry, Phys. Rev. B 93(17), 174105 (2016)

    Article  ADS  Google Scholar 

  12. Y. Yuan, Y. Feng, L. Bian, D. B. Zhang, and X. Z. Li, The quantum nature of the superconducting hydrogen sulfide at finite temperatures, arXiv: 1607.02348 [condmat] (2016)

    Google Scholar 

  13. A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)

    Article  ADS  Google Scholar 

  14. H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, Hydrogenrich superconductors at high pressures, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(1), e1330 (2018)

    Article  Google Scholar 

  15. Y. Yao and S. Tse John, Superconducting hydrogen sulfide, Chemistry 24(8), 1769 (2017)

    Article  Google Scholar 

  16. R. Szczesniak and A. P. Durajski, The isotope effect in H3S superconductor, Solid State Commun. 249, 30 (2017)

    Article  ADS  Google Scholar 

  17. A. P. Durajski and R. Szczęśniak, First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa, Sci. Rep. 7(1), 4473 (2017)

    Article  ADS  Google Scholar 

  18. S. Azadi and T. D. Kühne, High-pressure hydrogen sulfide by diffusion quantum Monte Carlo, J. Chem. Phys. 146(8), 084503 (2017)

    Article  ADS  Google Scholar 

  19. R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Phys. Rev. B 91(22), 224513 (2015)

    Article  ADS  Google Scholar 

  20. I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor, Phys. Rev. Lett. 114(15), 157004 (2015)

    Article  ADS  Google Scholar 

  21. C. Heil and L. Boeri, Influence of bonding on superconductivity in high-pressure hydrides, Phys. Rev. B 92(6), 060508 (2015)

    Article  ADS  Google Scholar 

  22. Y. Ge, F. Zhang, and Y. Yao, First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution, Phys. Rev. B 93(22), 224513 (2016)

    Article  ADS  Google Scholar 

  23. M. Komelj and H. Krakauer, Electron-phonon coupling and exchange-correlation effects in superconducting H3S under high pressure, Phys. Rev. B 92(20), 205125 (2015)

    Article  ADS  Google Scholar 

  24. E. J. Nicol and J. P. Carbotte, Comparison of pressurized sulfur hydride with conventional superconductors, Phys. Rev. B 91(22), 220507 (2015)

    Article  ADS  Google Scholar 

  25. A. F. Goncharov, S. S. Lobanov, V. B. Prakapenka, and E. Greenberg, Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur, Phys. Rev. B 95(14), 140101 (2017)

    Article  ADS  Google Scholar 

  26. B. Guigue, A. Marizy, and P. Loubeyre, Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa, Phys. Rev. B 95(2), 020104 (2017)

    Article  ADS  Google Scholar 

  27. H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)

    Article  ADS  Google Scholar 

  28. Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Dissociation products and structures of solid H2S at strong compression, Phys. Rev. B 93(2), 020103 (2016)

    Article  ADS  Google Scholar 

  29. T. Ishikawa, A. Nakanishi, K. Shimizu, H. Katayama- Yoshida, T. Oda, and N. Suzuki, Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure, Sci. Rep. 6(1), 23160 (2016)

    Article  ADS  Google Scholar 

  30. A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 [cond-mat] (2015)

    Google Scholar 

  31. H. Oh, S. Coh, and M. L. Cohen, Comparative study of high-Tc superconductivity in H3S and H3P, arXiv: 1606.09477 [cond-mat] (2016)

    Google Scholar 

  32. A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? J. Am. Chem. Soc. 138(6), 1884 (2016)

    Article  Google Scholar 

  33. S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Phase Diagram and high-temperature superconductivity of compressed selenium hydrides, Sci. Rep. 5(1), 15433 (2015)

    Article  ADS  Google Scholar 

  34. X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Tellurium hydrides at high pressures: High-temperature superconductors, Phys. Rev. Lett. 116(5), 057002 (2016)

    Article  ADS  Google Scholar 

  35. K. Abe and N. W. Ashcroft, Stabilization and highly metallic properties of heavy group-V hydrides at high pressures, Phys. Rev. B 92(22), 224109 (2015)

    Article  ADS  Google Scholar 

  36. Y. Fu, et al., Chem. Mater. (2016)

    Google Scholar 

  37. Y. Ma, et al., The unexpected binding and superconductivity in SbH4 at high pressure, arXiv: 1506.03889 [cond-mat] (2015)

    Google Scholar 

  38. Y. Wang, H. Wang, J. S. Tse, T. Iitaka, and Y. Ma, Structural morphologies of high-pressure polymorphs of strontium hydrides, Phys. Chem. Chem. Phys. 17, 19379 (2015)

    Article  Google Scholar 

  39. Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 9948 (2015)

    Article  ADS  Google Scholar 

  40. M. M. D. Esfahani, Z. Wang, A. R. Oganov, H. Dong, Q. Zhu, S. Wang, M. S. Rakitin, and X. F. Zhou, Superconductivity of novel tin hydrides (SnnHm) under pressure, Sci. Rep. 6(1), 22873 (2016)

    Article  ADS  Google Scholar 

  41. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-T c superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114, 6990 (2017)

    Article  ADS  Google Scholar 

  42. I. A. Kruglov, et al., Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, arXiv: 1708.05251 [cond-mat] (2017)

    Google Scholar 

  43. M. Rahm, R. Hoffmann, and N. W. Ashcroft, Ternary gold hydrides: Routes to stable and potentially superconducting compounds, J. Am. Chem. Soc. 139(25), 8740 (2017)

    Article  Google Scholar 

  44. S. Zhang, L. Zhu, H. Liu, and G. Yang, Structure and electronic properties of Fe2SH3 compound under high pressure, Inorg. Chem. 55(21), 11434 (2016)

    Article  Google Scholar 

  45. T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9, J. Phys. Chem. C 119(32), 18007 (2015)

    Article  Google Scholar 

  46. Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure, Phys. Rev. B 96(14), 144518 (2017)

    Article  ADS  Google Scholar 

  47. Y. Ma, D. Duan, Z. Shao, D. Li, L. Wang, H. Yu, F. Tian, H. Xie, B. Liu, and T. Cui, Prediction of superconducting ternary hydride MgGeH6: From divergent highpressure formation routes, Phys. Chem. Chem. Phys. 19(40), 27406 (2017)

    Article  Google Scholar 

  48. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  50. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  51. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  52. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  53. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  54. A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)

    Article  ADS  Google Scholar 

  55. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  56. Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)

    Article  ADS  Google Scholar 

  57. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)

    Article  ADS  Google Scholar 

  58. Y. Yao and J. S. Tse, Electron-phonon coupling in the high-pressure hcp phase of xenon: A first-principles study, Phys. Rev. B 75(13), 134104 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11404134, 91745203, 51572108, 11634004, 11574109, and 11674122), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT 15R23), National Fund for Fostering Talents of Basic Science (No. J1103202), Jilin Provincial Science and Technology Development Project of China (Grant Nos. 20160520016JH and 20170520116JH) and China Postdoctoral Science Foundation (Grant Nos. 2014M561279 and 2016T90246). Parts of calculations were performed in the High Performance Computing Center (HPCC) of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Cui  (崔田).

Additional information

Dedicated to Prof. Guangtian Zou on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liu, Y., Tian, FB. et al. Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Front. Phys. 13, 137107 (2018). https://doi.org/10.1007/s11467-018-0818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0818-7

Keywords

Navigation