Skip to main content
Log in

Exotic ferromagnetism in the two-dimensional quantum material C3N

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

An Erratum to this article was published on 25 August 2021

This article has been updated

Abstract

The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator–ferromagnet transition by tuning an external electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References and notes

  1. K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

    Article  ADS  Google Scholar 

  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magneto transport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  4. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Lett. 11(12), 5111 (2011)

    Article  ADS  Google Scholar 

  5. J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, High mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)

    Google Scholar 

  6. F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)

    Article  ADS  Google Scholar 

  7. K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373), 338 (2011)

    Article  ADS  Google Scholar 

  8. F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)

    Article  ADS  Google Scholar 

  9. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, topgated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)

    Article  ADS  Google Scholar 

  10. Y. Feng, X. Yao, M. Wang, Z. Hu, X. Luo, H. T. Wang, and L. Zhang, The atomic structures of carbon nitride sheets for cathode oxygen reduction catalysis, J. Chem. Phys. 138(16), 164706 (2013)

    Article  ADS  Google Scholar 

  11. H. J. Xiang, B. Huang, Z. Y. Li, S. H. Wei, J. L. Yang, and X. G. Gong, Ordered semiconducting nitrogengraphene alloys, Phys. Rev. X 2(1), 011003 (2012)

    Google Scholar 

  12. J. Mahmooda, E. K. Leea, M. Jungc, D. Shind, H. J. Choia, J. M. Seoa, S. M. Junga, D. Kimd, F. Lia, M. S. Lahd, N. Parkd, H. J. Shinc, J. H. Ohb, and J. B. Baek, Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state, Proc. Natl. Acad. Sci. USA 113, 7417 (2016)

    Google Scholar 

  13. S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S. T. Lee, Z. Kang, and M. Jiang, C3N-A2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties, Adv. Mater. 29(16), 1605625 (2017)

    Article  Google Scholar 

  14. P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, World Scientific, 1999

    Book  Google Scholar 

  15. M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)

    Article  ADS  Google Scholar 

  16. G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  17. A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)

    Article  Google Scholar 

  18. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)

    Article  ADS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  20. F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71(11), 809 (1947)

    Article  ADS  MATH  Google Scholar 

  21. See Supplemental Material in detail.

  22. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  23. W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Firstprinciples calculations of the electronic structure of iron-pnictide EuFe2(As, P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)

    Article  ADS  Google Scholar 

  24. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56(20), 12847 (1997)

    Article  ADS  Google Scholar 

  25. A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)

    Article  ADS  MATH  Google Scholar 

  26. X. G. Xu and W. Li, Electronic and magnetic structures of ternary iron telluride KFe2Te2, Front. Phys. 10(4), 107403 (2015)

    Article  Google Scholar 

  27. K. Hu, B. Gao, Q. Ji, Y. Ma, W. Li, X. Xu, H. Zhang, G. Mu, F. Huang, C. Cai, X. Xie, and M. Jiang, Effects of electron correlation, electron-phonon coupling, and spin-orbit coupling on the isovalent Pd-substituted superconductor SrPt3P, Phys. Rev. B 93(21), 214510 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Qiao, Z. H. Kang, and Y. Lifshitz for helpful discussions. This work was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04040300), the National Natural Science Foundation of China (Grant Nos. 11404359, 21473235, 11227902, and U1632269), the Youth Innovation Promotion Association (Grant No. 2016215), and the One Hundred Person Project of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xiaosong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WC., Li, W. & Liu, X. Exotic ferromagnetism in the two-dimensional quantum material C3N. Front. Phys. 13, 137104 (2018). https://doi.org/10.1007/s11467-017-0741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0741-3

Keywords

Navigation