Skip to main content
Log in

Superfluid response in heavy fermion superconductors

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo–Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large-N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1−x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tinkham, Introduction to Superconductivity, New York: McGraw-Hill, 1996

    Google Scholar 

  2. T. Xiang, d-wave superconductor, Beijing: Science Publisher, 2007 (in Chinese)

    Google Scholar 

  3. C. P. Poole, R. Prozorov, H. A. Farach, and R. J. Creswick, Superconductivity, 3rd Ed., Amsterdam: Elsevier, 2014

    Google Scholar 

  4. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Precision measurements of the temperature dependence of l in YBa2Cu3O6.95: Strong evidence for nodes in the gap function, Phys. Rev. Lett. 70(25), 3999 (1993)

    Article  ADS  Google Scholar 

  5. M. S. Kim, J. A. Skinta, T. R. Lemberger, A. Tsukada, and M. Naito, Magnetic penetration depth measurements of Pr2−x CexCuO4−d films on Buffered substrates: Evidence for a nodeless gap, Phys. Rev. Lett. 91(8), 087001 (2003)

    Article  ADS  Google Scholar 

  6. R. Prozorov and V. G. Kogan, London penetration depth in iron-based superconductors, Rep. Prog. Phys. 74(12), 124505 (2011)

    Article  ADS  Google Scholar 

  7. R. J. Ormeno, A. Sibley, C. E. Gough, S. Sebastian, and I. R. Fisher, Microwave conductivity and penetration depth in the heavy fermion superconductor CeCoIn5, Phys. Rev. Lett. 88(4), 047005 (2002)

    Article  ADS  Google Scholar 

  8. S. Özcan, D. M. Broun, B. Morgan, R. K. W. Haselwimmer, J. L. Sarrao, S. Kamal, C. P. Bidinosti, P. J. Turner, M. Raudsepp, and J. R. Waldram, London penetration depth measurements of the heavy-fermion superconductor CeCoIn5 near a magnetic quantum critical point, Europhys. Lett. 62(3), 412 (2003)

    Article  ADS  Google Scholar 

  9. E. E. M. Chia, D. J. Van Harlingen, M. B. Salamon, B. D. Yanoff, I. Bonalde, and J. L. Sarrao, Nonlocality and strong coupling in the heavy fermion superconductor CeCoIn5: A penetration depth study, Phys. Rev. B 67(1), 014527 (2003)

    Article  ADS  Google Scholar 

  10. K. Hashimoto, Y. Mizukami, R. Katsumata, H. Shishido, M. Yamashita, H. Ikeda, Y. Matsuda, J. A. Schlueter, J. D. Fletcher, A. Carrington, D. Gnida, D. Kaczorowski, and T. Shibauchi, Anomalous superfluid density in quantum critical superconductors, Proc. Natl. Acad. Sci. USA 110(9), 3293 (2013)

    Article  ADS  Google Scholar 

  11. C. J. S. Truncik, W. A. Huttema, P. J. Turner, S. Özcan, N. C. Murphy, P. R. Carrière, E. Thewalt, K. J. Morse, A. J. Koenig, J. L. Sarrao, and D. M. Broun, Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn5 revealed by precision microwave spectroscopy, Nat. Commun. 4, 2477 (2013)

    Article  ADS  Google Scholar 

  12. L. Shu, D. E. MacLaughlin, C. M. Varma, O. O. Bernal, P. C. Ho, R. H. Fukuda, X. P. Shen, and M. B. Maple, Landau renormalizations of superfluid density in the heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 113(16), 166401 (2014)

    Article  ADS  Google Scholar 

  13. H. Kim, M. A. Tanatar, R. Flint, C. Petrovic, R. Hu, B. D. White, I. K. Lum, M. B. Maple, and R. Prozorov, Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5, Phys. Rev. Lett. 114(2), 027003 (2015)

    Article  ADS  Google Scholar 

  14. C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, Heavy-fermion superconductivity in Ce-CoIn5 at 2.3 K, J. Phys.: Condens. Matter 13(17), 337 (2001)

    ADS  Google Scholar 

  15. R. Movshovich, M. Jaime, J. D. Thompson, C. Petrovic, Z. Fisk, P. G. Pagliuso, and J. L. Sarrao, Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies, Phys. Rev. Lett. 86(22), 5152 (2001)

    Article  ADS  Google Scholar 

  16. K. An, T. Sakakibara, R. Settai, Y. Onuki, M. Hiragi, M. Ichioka, and K. Machida, Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and d x2−y2 pairing symmetry, Phys. Rev. Lett. 104(3), 037002 (2010)

    Article  ADS  Google Scholar 

  17. K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, and Y. Onuki, Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 87(5), 057002 (2001)

    Article  ADS  Google Scholar 

  18. T. Tayama, A. Harita, T. Sakakibara, Y. Haga, H. Shishido, R. Settai and Y. Onuki, Unconventional heavy-fermion superconductor CeCoIn5: dc magnetization study at temperatures down to 50 mK, Phys. Rev. B 65, 180504(R) (2002)

    Article  ADS  Google Scholar 

  19. Y. Kohori, Y. Yamato, Y. Iwamoto, T. Kohara, E. D. Bauer, M. B. Maple, and J. L. Sarrao, NMR and NQR studies of the heavy fermion superconductors CeTIn5 (T=Co and Ir), Phys. Rev. B 64(13), 134526 (2001)

    Article  ADS  Google Scholar 

  20. S. Ernst, S. Wirth, F. Steglich, Z. Fisk, J. L. Sarrao, and J. D. Thompson, Scanning tunneling microscopy studies on CeCoIn5 and CeIrIn5, Phys. Status Solidi B 247(3), 624 (2010)

    Article  ADS  Google Scholar 

  21. C. Stock, C. Broholm, J. Hudis, H. J. Kang, and C. Petrovic, Spin resonance in the d-wave superconductor CeCoIn5, Phys. Rev. Lett. 100(8), 087001 (2008)

    Article  ADS  Google Scholar 

  22. M. P. Allan, F. Massee, D. K. Morr, J. Van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)

    Article  Google Scholar 

  23. B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)

    Article  Google Scholar 

  24. J. Van Dyke, F. Massee, M. P. Allan, J. C. Davis, C. Petrovic, and D. K. Morr, Direct evidence for a magnetic f-electron mediated pairing mechanism of heavyfermion superconductivity in CeCoIn5, Proc. Natl. Acad. Sci. USA 111(32), 11663 (2014)

    Article  ADS  Google Scholar 

  25. Y. Xu, J. K. Dong, L. I. Lum, J. Zhang, X. C. Hong, L. P. He, K. F. Wang, Y. C. Ma, C. Petrovic, M. B. Maple, L. Shu, and S. Y. Li, Universal heat conduction in Ce1−x YbxCoIn5: Evidence for robust nodal d-wave superconducting gap, Phys. Rev. B 93(6), 064502 (2016)

    Article  ADS  Google Scholar 

  26. O. Erten, R. Flint, and P. Coleman, Molecular pairing and fully gapped superconductivity in Yb-doped Ce-CoIn5, Phys. Rev. Lett. 114(2), 027002 (2015)

    Article  ADS  Google Scholar 

  27. C. M. Varma, K. Miyake, and S. Schmitt-Rink, London penetration depth of heavy-fermion superconductors, Phys. Rev. Lett. 57(5), 626 (1986)

    Article  ADS  Google Scholar 

  28. P. Coleman, A. M. Tsvelik, N. Andrei, and H. Y. Kee, Co-operative Kondo effect in the two-channel Kondo lattice, Phys. Rev. B 60(5), 3608 (1999)

    Article  ADS  Google Scholar 

  29. P. Coleman and N. Andrei, Kondo-stabilised spin liquids and heavy fermion superconductivity, J. Phys.: Condens. Matter 1(26), 4057 (1989)

    ADS  Google Scholar 

  30. Y. Liu, H. Li, G. M. Zhang, and L. Yu, d-wave superconductivity induced by short-range antiferromagnetic correlations in the two-dimensional Kondo lattice model, Phys. Rev. B 86(2), 024526 (2012)

    Article  ADS  Google Scholar 

  31. Y. Liu, G. M. Zhang, and L. Yu, Pairing symmetry of heavy fermion superconductivity in the two-dimensional Kondo–Heisenberg lattice model, Chin. Phys. Lett. 31(8), 087102 (2014)

    Article  ADS  Google Scholar 

  32. J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)

    ADS  Google Scholar 

  33. D. J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84(4), 1383 (2012)

    Article  ADS  Google Scholar 

  34. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high temperature superconducting cuprates: The plain vanilla version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)

    ADS  Google Scholar 

  35. P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)

    Article  ADS  Google Scholar 

  36. Y. Zhong, L. Zhang, H. T. Lu, and H. G. Luo, Fermionology in the Kondo–Heisenberg model: the case of CeCoIn5, Eur. Phys. J. B 88(9), 238 (2015)

    Article  ADS  Google Scholar 

  37. P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge: Cambridge University Press, 2015

    Book  MATH  Google Scholar 

  38. C. Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys. 81(4), 1551 (2009)

    Article  ADS  Google Scholar 

  39. L. Shu, D. E. MacLaughlin, W. P. Beyermann, R. H. Heffner, G. D. Morris, O. O. Bernal, F. D. Callaghan, J. E. Sonier, W. M. Yuhasz, N. A. Frederick, and M. B. Maple, Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4Sb12, Phys. Rev. B 79(17), 174511 (2009)

    Article  ADS  Google Scholar 

  40. X. Y. Tee, H. G. Luo, T. Xiang, D. Vandervelde, M. B. Salamon, H. Sugawara, H. Sato, C. Panagopoulos, and E. E. M. Chia, Penetration depth study of LaOs4Sb12: Multiband s-wave superconductivity, Phys. Rev. B 86(6), 064518 (2012)

    Article  ADS  Google Scholar 

  41. T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)

    Article  ADS  Google Scholar 

  42. Y. Zhong, K. Liu, Y. F. Wang, Y. Q. Wang, and H. G. Luo, Half-filled Kondo lattice on the honeycomb lattice, Eur. Phys. J. B 86(5), 195 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  43. L. Zhang, Y. F. Wang, Y. Zhong, and H. G. Luo, Extended s-wave pairing symmetry on the triangular lattice heavy fermion system, Eur. Phys. J. B 88(10), 267 (2015)

    Article  ADS  Google Scholar 

  44. A. Ramires and P. Coleman, Supersymmetric approach to heavy fermion systems, Phys. Rev. B 93(3), 035120 (2016)

    Article  ADS  Google Scholar 

  45. N. Read and D. Newns, On the solution of the Coqblin-Schrieffer Hamiltonian by the large-N expansion technique, J. Phys. C 16, 3273 (1983)

    Article  ADS  Google Scholar 

  46. P. Coleman, Mixed valence as an almost broken symmetry, Phys. Rev. B 35(10), 5072 (1987)

    Article  ADS  Google Scholar 

  47. M. Z. Asadzadeh, M. Fabrizio, and F. Becca, Superconductivity from spoiling magnetism in the Kondo lattice model, Phys. Rev. B 90(20), 205113 (2014)

    Article  ADS  Google Scholar 

  48. P. Coleman and A. H. Nevidomskyy, Frustration and the Kondo effect in heavy fermion materials, J. Low Temp. Phys. 161(1–2), 182 (2010)

    Article  ADS  Google Scholar 

  49. G. Kotliar and J. Liu, Superexchange mechanism and dwave superconductivity, Phys. Rev. B 38(7), 5142 (1988)

    Article  ADS  Google Scholar 

  50. A. Koitzsch, I. Opahle, S. Elgazzar, S. V. Borisenko, J. Geck, V. B. Zabolotnyy, D. Inosov, H. Shiozawa, M. Richter, M. Knupfer, J. Fink, B. Büchner, E. D. Bauer, J. L. Sarrao, and R. Follath, Electronic structure of Ce-CoIn5 from angle-resolved photoemission spectroscopy, Phys. Rev. B 79(7), 075104 (2009)

    Article  ADS  Google Scholar 

  51. X. W. Jia, Y. Liu, L. Yu, J. F. He, L. Zhao, W. T. Zhang, H. Y. Liu, G. D. Liu, S. L. He, J. Zhang, W. Lu, Y. Wu, X. L. Dong, L. L. Sun, G. L. Wang, Y. Zhu, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Growth, characterization and fermi surface of heavy fermion Ce-CoIn5 superconductor, Chin. Phys. Lett. 28(5), 057401 (2011)

    Article  ADS  Google Scholar 

  52. L. Dudy, J. D. Denlinger, L. Shu, M. Janoschek, J. W. Allen, and M. B. Maple, Yb valence change in Ce1−x YbxCoIn5 from spectroscopy and bulk properties, Phys. Rev. B 88(16), 165118 (2013)

    Article  ADS  Google Scholar 

  53. A. Polyakov, O. Ignatchik, B. Bergk, K. Götze, A. D. Bianchi, S. Blackburn, B. Prévost, G. Seyfarth, M. Côté, D. Hurt, C. Capan, Z. Fisk, R. G. Goodrich, I. Sheikin, M. Richter, and J. Wosnitza, Fermi-surface evolution in Yb-substituted CeCoIn5, Phys. Rev. B 85(24), 245119 (2012)

    Article  ADS  Google Scholar 

  54. H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Pressure-induced superconductivity in Quasi-2D CeRhIn 5, Phys. Rev. Lett. 84(21), 4986 (2000)

    Article  ADS  Google Scholar 

  55. T. Park, F. Ronning, H.-Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5, Nature (London) 440, 65 (2006)

    Article  ADS  Google Scholar 

  56. P. J. Hirschfeld and N. Goldenfeld, Effect of strong scattering on the low-temperature penetration depth of a dwave superconductor, Phys. Rev. B 48(6), 4219 (1993)

    Article  ADS  Google Scholar 

  57. I. Kosztin and A. J. Leggett, Nonlocal effects on the magnetic penetration depth in d-wave superconductors, Phys. Rev. Lett. 79(1), 135 (1997)

    Article  ADS  Google Scholar 

  58. E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Zhong or Hong-Gang Luo.

Additional information

arXiv: 1511.04167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Zhang, L., Shao, C. et al. Superfluid response in heavy fermion superconductors. Front. Phys. 12, 127101 (2017). https://doi.org/10.1007/s11467-016-0625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0625-y

Keywords

Navigation