Skip to main content
Log in

Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Because of the many potential medical applications of nanoparticles, considerable research has been conducted on the interactions between nanoparticles and biomembranes. We employed coarsegrained molecular dynamics simulations to study the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes. Diffusion coefficients and scaling factors are adopted to quantify the diffusivity of the biomembranes, and the rupture tension is used to measure the lateral strength of the lipid bilayer. According to our simulations, all wrapped nanoparticles, except those wrapped by dipalmitoyl-glycero-phosphoglycerol, can be inserted into the bilayers. Our simulations also reveal that the bilayers remain in free diffusion after the nanoparticle insertions while their diffusion coefficient can be altered significantly. The polyhydroxylated single-walled nanotubes lead to significant changes to the lateral strength of biomembranes and this effect depends on the quantity of the inserted nanoparticles. The simulations demonstrate the feasibility of using these methods to deliver nanoparticles while some suggestions are given for choosing the appropriate lipids for wrapping. The results also suggest that the functionalized nanoparticles could be applied in strengthening or weakening the lateral strength of biomembranes for specific purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Samberg, S. J. Oldenburg, and N. A. Monteiro-Riviere, Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro, Environ. Health Perspect. 118(3), 407 (2010)

    Article  Google Scholar 

  2. B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes, Analytical methods to assess nanoparticle toxicity, Analyst 134(3), 425 (2009)

    Article  ADS  Google Scholar 

  3. X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, and J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans, Environ. Sci. Technol. 46(2), 1119 (2012)

    Article  ADS  Google Scholar 

  4. M. Schulz, A. Olubummo, and W. H. Binder, Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes, Soft Matter 8(18), 4849 (2012)

    Article  ADS  Google Scholar 

  5. A. A. Skandani, R. Zeineldin, and M. Al-Haik, Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes, Langmuir 28(20), 7872 (2012)

    Article  Google Scholar 

  6. Y. I. Prylutskyy, V. M. Yashchuk, K. M. Kushnir, A. A. Golub, V. A. Kudrenko, S. V. Prylutska, I. I. Grynyuk, E. V. Buzaneva, P. Scharff, T. Braun, and O. P. Matyshevska, Biophysical studies of fullerene-based composite for bio-nanotechnology, Mater. Sci. Eng. C 23(1–2), 109 (2003)

    Article  Google Scholar 

  7. N. A. Kouklin, W. E. Kim, A. D. Lazareck, and J. M. Xu, Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett. 87(17), 173901 (2005)

    Article  ADS  Google Scholar 

  8. S. D. Caruthers, S. A. Wickline, and G. M. Lanza, Nanotechnological applications in medicine, Curr. Opin. Biotechnol. 18(1), 26 (2007)

    Article  Google Scholar 

  9. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther. 83(5), 761 (2008)

    Article  Google Scholar 

  10. D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Nanoparticle-based diagnosis and therapy, Curr. Drug Targets 7(6), 643 (2006)

    Article  Google Scholar 

  11. P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna, and M. R. Hamblin, Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism, Free Radic. Biol. Med. 43(5), 711 (2007)

    Article  Google Scholar 

  12. J. Lin, H. Zhang, Z. Chen, and Y. Zheng, Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship, ACS Nano 4(9), 5421 (2010)

    Article  Google Scholar 

  13. Y. Li, X. Chen, and N. Gu, Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/hydrophilic effect, J. Phys. Chem. B 112(51), 16647 (2008)

    Article  Google Scholar 

  14. J. Wong-Ekkabut, S. Baoukina, W. Triampo, I. M. Tang, D. P. Tieleman, and L. Monticelli, Computer simulation study of fullerene translocation through lipid membranes, Nat. Nanotechnol. 3(6), 363 (2008)

    Article  ADS  Google Scholar 

  15. K. Yang and Y. Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol. 5(8), 579 (2010)

    Article  ADS  Google Scholar 

  16. K. Lai, B. Wang, Y. Zhang, and Y. Zheng, Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress, Phys. Chem. Chem. Phys. 15(1), 270 (2013)

    Article  Google Scholar 

  17. X. Zhang, Y. Zhang, Y. Zheng, and B. Wang, Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration, Phys. Chem. Chem. Phys. 15(7), 2473 (2013)

    Article  MathSciNet  Google Scholar 

  18. J. Kolosnjaj, H. Szwarc, and F. Moussa, Bio-Applications of Nanoparticles, Springer, 2007, page 168

    Google Scholar 

  19. C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol. 3(7), 423 (2008)

    Article  Google Scholar 

  20. T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, and A. E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett. 6(8), 1794 (2006)

    Article  ADS  Google Scholar 

  21. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo, Cytotoxicity of carbon nanomaterials: Singlewall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol. 39(5), 1378 (2005)

    Article  ADS  Google Scholar 

  22. H. Lee, Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids, J. Phys. Chem. B 117(5), 1337 (2013)

    Article  Google Scholar 

  23. A. Z. Wang, R. Langer, and O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med. 63(1), 185 (2012)

    Article  Google Scholar 

  24. A. Babu, A. K. Templeton, A. Munshi and R. Ramesh, Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges, Journal of Nanomaterials, 2013 (2013)

  25. D. Pozzi, C. Marchini, F. Cardarelli, A. Rossetta, V. Colapicchioni, A. Amici, M. Montani, S. Motta, P. Brocca, L. Cantù, and G. Caracciolo, Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems, Mol. Pharm. 10(12), 4654 (2013)

    Article  Google Scholar 

  26. S. Tan, X. Li, Y. Guo, and Z. Zhang, Lipid-enveloped hybrid nanoparticles for drug delivery, Nanoscale 5(3), 860 (2013)

    Article  ADS  Google Scholar 

  27. P. Majewski and B. Thierry, Functionalized magnetite nanoparticles — synthesis, properties, and bio-applications, Crit. Rev. Solid State Mater. Sci. 32(3), 203 (2007)

    Article  ADS  Google Scholar 

  28. S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O’Brien, C. B. Murray, J. R. Kirtley, and G. A. Held, Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B 109(26), 13030 (2005)

    Article  Google Scholar 

  29. S. Yu, and G. M. Chow, Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications, J. Mater. Chem. 14(18), 2781 (2004)

    Article  Google Scholar 

  30. J. D. Peters, Cellular Transport of Functionalized Gold Nanoparticles, Ph. D. Thesis, Worcester: Worcester Polytechnic Institute, 2013

    Google Scholar 

  31. Z. Chen, L. Ma, Y. Liu, and C. Chen, Applications of functionalized fullerenes in tumor theranostics., Theranostics 2(3), 238 (2012)

    Article  MathSciNet  Google Scholar 

  32. W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C 114(4), 1822 (2010)

    Article  Google Scholar 

  33. J. Grebowski, A. Krokosz and M. Puchala, Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene, Biochimica et Biophysica Acta (BBA)-Biomembranes 1828, 241 (2012)

    Article  Google Scholar 

  34. D. Baowan, B. J. Cox, and J. M. Hill, Instability of C60 fullerene interacting with lipid bilayer, J. Mol. Model. 18(2), 549 (2012)

    Article  MathSciNet  Google Scholar 

  35. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B 111(27), 7812 (2007)

    Article  Google Scholar 

  36. S. J. Marrink, A. H. de Vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B 108(2), 750 (2004)

    Article  Google Scholar 

  37. H. Lee and H. Kim, Self-assembly of lipids and single-walled carbon nanotubes: Effects of lipid structure and PEGylation, J. Phys. Chem. C 116(16), 9327 (2012)

    Article  Google Scholar 

  38. TubeGen 3.4 (web-interface, http://turin.nss.udel.edu/research/tubegenonline.html), J. T. Frey and D. J. Doren, University of Delaware, Newark DE, 2011

  39. H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun. 91(1–3), 43 (1995)

    Article  ADS  Google Scholar 

  40. E. Lindahl, B. Hess and D. Van Der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis Molecular modeling annual 7, 306 (2001)

    Google Scholar 

  41. H. J.C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81(8), 3684 (1984)

    Article  ADS  Google Scholar 

  42. R. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine, and P. C. Ke, Translocation of C60 and its derivatives across a lipid bilayer, Nano Lett. 7(3), 614 (2007)

    Article  ADS  Google Scholar 

  43. X. Li, Y. Shi, B. Miao, and Y. Zhao, Effects of embedded carbon nanotube on properties of biomembrane, J. Phys. Chem. B 116(18), 5391 (2012)

    Article  Google Scholar 

  44. R. Abedi Karjiban, N. S. Shaari, U. V. Gunasakaran and M. Basri, A Coarse-Grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution, Journal of Chemistry, 2013 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, GX., Zhang, L. & Zhang, Y. Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers. Front. Phys. 10, 177–186 (2015). https://doi.org/10.1007/s11467-014-0440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0440-2

Keywords

Navigation