Skip to main content
Log in

Quantum spin Hall effect in inverted InAs/GaSb quantum wells

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity of a non-trivial origin, while the length and width dependence of conductance in this regime show strong evidence for the existence of helical edge modes proposed by Liu et al. [Phys. Rev. Lett., 2008, 100: 236601]. Surprisingly, edge modes persist in spite of comparable bulk conduction and show only weak dependence on magnetic field. We elucidate that seeming independence of edge on bulk transport comes due to the disparity in Fermi-wave vectors between the bulk and the edge, leading to a total internal reflection of the edge modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82: 3045

    Article  ADS  Google Scholar 

  2. X. L. Qi and S.C. Zhang, arXiv:1008.2026, 2010

  3. C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95: 226801

    Article  ADS  Google Scholar 

  4. B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett., 2006, 96: 106802

    Article  ADS  Google Scholar 

  5. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 2006, 314: 1757

    Article  ADS  Google Scholar 

  6. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science, 2007, 318: 766

    Article  ADS  Google Scholar 

  7. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970

    Article  ADS  Google Scholar 

  8. P. Roushan J Seo C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature, 2009, 460: 1106

    Article  ADS  Google Scholar 

  9. P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J. Wang, Y. Wang, B. F. Zhu, X. Chen, X. C. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. C. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Phys. Rev. Lett., 2010, 105: 076801

    Article  ADS  Google Scholar 

  10. C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett., 2008, 100: 236601

    Article  ADS  Google Scholar 

  11. I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. B, 2010, 81: 201301 (R)

    Article  ADS  Google Scholar 

  12. I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett., 2011, 107: 136603

    Article  ADS  Google Scholar 

  13. I. Y. Naveh and B. Laikhtman, Appl. Phys. Lett., 1995, 66: 1980

    Article  ADS  Google Scholar 

  14. C. Nguyen, J. Werking, H. Kroemer, and E. L. Hu, Appl. Phys. Lett., 1990, 57: 87

    Article  ADS  Google Scholar 

  15. L. Fu and C. L. Kane, Phys. Rev. Lett., 2008, 100: 096407

    Article  ADS  Google Scholar 

  16. H. Kroemer, Physica E, 2004, 20: 196

    Article  ADS  Google Scholar 

  17. See: e.g., S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995

    Google Scholar 

  18. M. Yang, C. Yang, B. Bennett, and B. Shanabrook, Phys. Rev. Lett., 1997, 78: 4613

    Article  ADS  Google Scholar 

  19. L. Cooper, N. Patel, V. Drouot, E. Linfield, D. Ritchie, and M. Pepper, Phys. Rev. B, 1998, 57: 11915

    Article  ADS  Google Scholar 

  20. J. Kono, B. D. McCombe, I. Lo, W. C. Mitchel, and C. E. Stutz, Phys. Rev. B, 1997, 55: 1617

    Article  ADS  Google Scholar 

  21. M. J. Yang, C. H. Yang, and B. R. Bennett, Phys. Rev. B, 1999, 60: R13958

    Article  ADS  Google Scholar 

  22. Y. Naveh and B. Laikhtman, Europhys. Lett., 2001, 55: 545

    Article  ADS  Google Scholar 

  23. A. Caldeira and A. J. Legett, Phys. Rev. Lett., 1981, 46: 211

    Article  ADS  Google Scholar 

  24. C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, J. Electron. Mater., 1993, 22: 255

    Article  ADS  Google Scholar 

  25. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett., 1979, 42: 673

    Article  ADS  Google Scholar 

  26. B. Zhou, H. Z. Lu, R. L. Chu, S. Q. Shen, and Q. Niu, Phys. Rev. Lett., 2008, 101: 246807

    Article  ADS  Google Scholar 

  27. J. I. Väyrynen and T. Ojanen, Phys. Rev. Lett., 2011, 106: 076803

    Article  ADS  Google Scholar 

  28. J. Maciejko, X. L. Qi, and S. C. Zhang, Phys. Rev. B, 2010, 82: 155310

    Article  ADS  Google Scholar 

  29. M. Konig, Ph. D. Thesis, Wurzburg University, 2007, private communications

  30. R. J. Nicholas, K. Takashina, M. Lakrimi, B. Kardynal, S. Khym, N. J. Mason, D. M. Symons, D. K. Maude, and J. C. Portal, Phys. Rev. Lett., 2000, 85: 2364

    Article  ADS  Google Scholar 

  31. I. Knez, R. R. Du, and G. Sullivan, to be published

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Knez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knez, I., Du, RR. Quantum spin Hall effect in inverted InAs/GaSb quantum wells. Front. Phys. 7, 200–207 (2012). https://doi.org/10.1007/s11467-011-0204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0204-1

Keywords

Navigation