Skip to main content
Log in

Modeling mobile ad hoc communication networks on two-dimensional square lattice

  • Research Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

In this paper, we model the mobile ad hoc communication network on a two-dimensional square lattice. Both structure and function of it depend on transmission range and site-occupancy of nodes. Critical occupancies σ c for different transmission ranges r to maintain global connection are found. Universal scaling function behaves as η:_ f(R β σ), where |R = (rr 0)/r 0, and the scaling exponent β = −0.61, which distinguishes itself from percolation in previous lattice or network models. When the occupancy σ is near the threshold σ c , individual nodes self-organize into a dynamic small world network relative to geometric distance. The network has a cut-off degree below which clustering coefficient keeps constant, which distinguish itself from other systems and has its potential application in technical designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Watts and S. H. Strogaz, Nature, 1998, 393: 440

    Article  ADS  Google Scholar 

  2. A. L. Barabási and R. Albert, Science, 1999, 286: 509

    Article  MathSciNet  Google Scholar 

  3. Z. G. Zheng, X. Q. Feng, B. Ao, and M. C. Cross, Front. Phys. China, 2006, 1(4): 458

    Article  ADS  Google Scholar 

  4. M. Zhao, T. Zhou, G. R. Chen, and B. H. Wang, Front. Phys. China, 2007, 2(4): 460

    Article  ADS  Google Scholar 

  5. L. Huang, Y. C. Lai, K. Park, X. G. Wang, C. H. Lai, and R. A. Gatenby, Front. Phys. China, 2007, 2(4): 446

    Article  ADS  Google Scholar 

  6. J. Zhou and Z. H. Liu, Front. Phys. China, 2008, 3(3): 331

    Article  ADS  Google Scholar 

  7. D. Garlaschelli, G. Caldarelli, and L. Pietronero, Nature (London), 2003, 423: 165

    Article  ADS  Google Scholar 

  8. K. Böner, J. T. Maru, and R. L. Goldstone, Proc. Natl. Acad. Sci. USA, 2004, 101: 5266

    Article  Google Scholar 

  9. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási, Nature (London), 2000, 407: 651

    Article  ADS  Google Scholar 

  10. P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna, Phys. Rev. E, 2003, 67: 036106

    Article  ADS  Google Scholar 

  11. A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc. Natl. Acad. Sci. USA, 2004, 101: 3747

    Article  ADS  Google Scholar 

  12. M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Commun. Rev., 1999, 29: 251

    Article  Google Scholar 

  13. R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Phys. Rev. Lett., 2001, 87: 258701

    Article  ADS  Google Scholar 

  14. R. Albert, H. Jeong, and A. L. Barabási, Nature (London), 1999, 401: 130

    Article  ADS  Google Scholar 

  15. R. Crucitti, V. Latora, and M. Marchiori, Physica A, 2004, 338: 92

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Albert, I. Albert, and G. L. Nakarado, Phys. Rev. E, 2004, 69: 025103(R)

    Article  ADS  Google Scholar 

  17. IETF Mobile Ad-hoc Networks Working Group, http://www.ietf.org/html.charters/manet-charter.html

  18. Wireless Ad-hoc Networks Bibliography, http://w3.antd.nist.gov/wctg/manet/manet-bibliog.html

  19. A. F. Rozenfeld, R. Cohen, D. Avraham, and S. Havlin, Phys. Rev. Lett., 2002, 89: 218701

    Article  ADS  Google Scholar 

  20. Y. B. Xie, T. Zhou, W. J. Bai, G. Chen, W. K. Xiao, and B. H. Wang, Phys. Rev. E, 2007, 85: 036106

    Article  ADS  Google Scholar 

  21. R. Xulvi-Brunet and I. M. Sokolov, Phys. Rev. E, 2007, 75: 046117

    Article  ADS  Google Scholar 

  22. K. Q. Yang, L. Yang, B. H. Gong, Z. C. Lin, H. S. He, and L. Huang, Front. Phys. China, 2008, 3(1): 105

    Article  ADS  Google Scholar 

  23. P. Santi and D. M. Blough, IEEE Trans. Mobile Computing, 2003, 2: 25–39

    Article  Google Scholar 

  24. V. Rodoplu and T. H. Meng, IEEE J. Selected Areas in Comm., 1999, 178: 1333

    Article  Google Scholar 

  25. G. Nemethé and G. Vattay, Phys. Rev. E, 2003, 67: 036110

    Article  ADS  Google Scholar 

  26. N. Sarshar and V. Roychowdhury, Phys. Rev. E, 2004, 69: 026101

    Article  ADS  Google Scholar 

  27. K. Christensen and N. R. Moloney, Complexity and Criticality, Shanghai: Fudan University Press, 2006

    Google Scholar 

  28. M. E. J. Newman and D. J. Watts, Phys. Rev. E, 1999, 60: 7332

    Article  ADS  Google Scholar 

  29. C. Moore and M. E. J. Newman, Phys. Rev. E, 2000, 62: 7059

    Article  ADS  Google Scholar 

  30. C. K. Hu, C. Y. Lin, and J. A. Chen, Phys. Rev. Lett., 1995, 75: 193

    Article  ADS  Google Scholar 

  31. H. J. Herrmann, C. Hong, and H. E. Stanley, J. Phys. A, 1984, 17: L261

    Article  ADS  Google Scholar 

  32. L. Wang, C. P. Zhu, and Z. M. Gu, Phy. Rev. E, 2008, 78: 066107

    Article  ADS  Google Scholar 

  33. C. P. Zhu, S. J. Xiong, Y. J. Tian, N. Li, and K. S. Jiang, Phys. Rev. Lett., 2004, 92: 218702

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-ping Zhu  (朱陈平).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhu, Cp., Gu, Zm. et al. Modeling mobile ad hoc communication networks on two-dimensional square lattice. Front. Phys. China 4, 556–560 (2009). https://doi.org/10.1007/s11467-009-0074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0074-y

Keywords

PACS numbers

Navigation