Skip to main content
Log in

Spin qubits for quantum simulations

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

An Erratum to this article was published on 07 July 2010

Abstract

The investigation of quantum mechanical systems mostly concentrates on single elementary particles. If we combine such particles into a composite quantum system, the number of degrees of freedom of the combined system grows exponentially with the number of particles. This is a major difficulty when we try to describe the dynamics of such a system, since the computational resources required for this task also grow exponentially. In the context of quantum information processing, this difficulty becomes the main source of power: in some situations, information processors based in quantum mechanics can process information exponentially faster than classical systems. From the perspective of a physicist, one of the most interesting applications of this type of information processing is the simulation of quantum systems. We call a quantum information processor that simulates other quantum systems a quantum simulator.

This review discusses a specific type of quantum simulator, based on nuclear spin qubits, and using nuclear magnetic resonance for processing. We review the basics of quantum information processing by nuclear magnetic resonance (NMR) as well as the fundamentals of quantum simulation and describe some simple applications that can readily be realized by today’s quantum computers. In particular, we discuss the simulation of quantum phase transitions: the qualitative changes that the ground states of some quantum mechanical systems exhibit when some parameters in their Hamiltonians change through some critical points. As specific examples, we consider quantum phase transitions where the relevant ground states are entangled. Chains of spins coupled by Heisenberg interactions represent an ideal system for studying these effects: depending on the type and strength of interactions, the ground states can be product states or they can be maximally entangled states representing different types of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Moore, Electronics, 1965, 38: 114

    Google Scholar 

  2. P. S. Peercy, Nature, 2000, 406: 1023

    Google Scholar 

  3. L. B. Kish, Phys. Lett. A, 2002, 305: 144

    ADS  Google Scholar 

  4. R. Landauer, Phys. Today, 1991, May: 23

  5. R. P. Feynman, International Journal of Theoretical Physics, 1982, 21: 467

    MathSciNet  ADS  Google Scholar 

  6. P. Benioff, J. Stat. Phys., 1982, 29: 515

    MATH  MathSciNet  ADS  Google Scholar 

  7. E. Bernstein and U. Vazirani, Quantum complexity theory, in: Proc. 25th ACM Symp. Theory Comp., 1993: 11

  8. D. Coppersmith, arXiv: quant-ph/0201067, 1994

  9. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, Piscataway, NJ: IEEE Press, 1994

  10. S. Lloyd, Science, 1996, 273: 1073

    MathSciNet  ADS  Google Scholar 

  11. R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A, 2002, 65: 042323

    ADS  Google Scholar 

  12. D. S. Abrams and S. Lloyd, Phys. Rev. Lett., 1997, 79: 2586

    ADS  Google Scholar 

  13. D. S. Abrams and S. Lloyd, Phys. Rev. Lett., 1999, 83: 5162

    ADS  Google Scholar 

  14. C. Zalka, Proc. R. Soc. Lond. A, 1998, 454: 313

    MATH  ADS  Google Scholar 

  15. S. Wiesner, arXiv: quant-ph/9603028, 1996

  16. B. M. Boghosian and W. Taylor, arXiv: quantph/9701016v2, 1997

  17. L. A. Wu, M. S. Byrd, and D. A. Lidar, Phys. Rev. Lett., 2002, 89: 057904

    MathSciNet  ADS  Google Scholar 

  18. G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A, 2001, 64: 022319

    ADS  Google Scholar 

  19. H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoff-mann, Phys. Chem. Chem. Phys., 2008, 10: 5388

    Google Scholar 

  20. A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science, 2005, 309: 1704

    ADS  Google Scholar 

  21. D. A. Lidar and H. Wang, Phys. Rev. E, 1999, 59: 2429

    ADS  Google Scholar 

  22. A. Y. Smirnov, S. Savel’ev, L. G. Mourokh, and F. Nori, Europhys. Lett., 2007, 80: 67008

    ADS  Google Scholar 

  23. I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Proc. Nat. Acad. Sci. USA, 2008, 105: 18681

    ADS  Google Scholar 

  24. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature, 2002, 415: 39

    ADS  Google Scholar 

  25. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett., 1998, 81: 3108

    ADS  Google Scholar 

  26. J. J. García-Ripoll, E. Solano, and M. A. Martin-Delgado, Phys. Rev. B, 2008, 77: 024522

    ADS  Google Scholar 

  27. C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, Phys. Rev. A, 1999, 61: 012302

    ADS  Google Scholar 

  28. S. Somaroo, C. H. Tseng, T. F. Havel, R. Laflamme, and D. G. Cory, Phys. Rev. Lett., 1999, 82: 5381

    ADS  Google Scholar 

  29. C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, Phys. Rev. A, 2000, 62: 032309

    ADS  Google Scholar 

  30. A. K. Khitrin and B. M. Fung, Phys. Rev. A, 2001, 64: 032306

    ADS  Google Scholar 

  31. C. Negrevergne, R. Somma, G. Ortiz, E. Knill, and R. Laflamme, Phys. Rev. A, 2005, 71: 032344

    ADS  Google Scholar 

  32. U. Haeberlen and J. S. Waugh, Phys. Rev., 1968, 175: 453

    ADS  Google Scholar 

  33. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2001

    Google Scholar 

  34. J. Stolze and D. Suter, Quantum Computing: A Short Course from Theory to Experiment, 2nd Ed., Berlin: Wiley-VCH, 2008

    MATH  Google Scholar 

  35. D. Deutsch, Proc. R. Soc. Lond. A, 1989, 425: 1934

    MathSciNet  Google Scholar 

  36. D. Deutsch, Proc. R. Soc. Lond. A, 1985, 400: 1934

    MathSciNet  Google Scholar 

  37. L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys., 2004, 76: 1037

    ADS  Google Scholar 

  38. R. Laflamme, E. Knill, D. Cory, E. Fortunato, T. Havel, C. Miquel, R. Martinez, C. Negrevergne, G. Ortiz, M. Pravia, et al., arXiv: quant-ph/0207172v1, 2002

  39. J. A. Jones and E. Knill, J. Magn. Res., 1999, 141: 322

    ADS  Google Scholar 

  40. N. Linden, B. Herve, R. J. Carbajo, and R. Freeman, Chem. Phys. Lett., 1999, 305: 28

    ADS  Google Scholar 

  41. N. Sinha, T. S. Mahesh, K. V. Ramanathan, and A. Kumar, J. Chem. Phys., 2001, 114: 4415

    ADS  Google Scholar 

  42. A. K. Khitrin and B. M. Fung, J. Chem. Phys., 2000, 112: 6963

    ADS  Google Scholar 

  43. J. Du, M. Shi, J. Wu, X. Zhou, and R. Han, Phys. Rev. A, 2001, 63: 042302

    ADS  Google Scholar 

  44. K. Dorai, Arvind, and A. Kumar, Phys. Rev. A, 2000, 61: 042306

    MathSciNet  ADS  Google Scholar 

  45. T. S. Mahesh, N. Sinha, K. V. Ramanathan, and A. Kumar, Phys. Rev. A, 2002, 65: 022312

    ADS  Google Scholar 

  46. J. Du, J. Wu, M. Shi, L. Han, X. Zhou, B. Ye, H. Weng, and R. Han, Chin. Phys. Lett., 2000, 17: 64

    ADS  Google Scholar 

  47. K. V. R. M. Murali, N. Sinha, T. S. Mahesh, M. H. Levitt, K. V. Ramanathan, and A. Kumar, Phys. Rev. A, 2002, 66: 022313

    ADS  Google Scholar 

  48. T. S. Mahesh, K. Dorai, Arvind, and A. Kumar, J. Magn. Res., 2001, 148: 95

    ADS  Google Scholar 

  49. N. Linden, H. Barjat, and R. Freeman, Chem. Phys. Lett., 1998, 296: 61

    ADS  Google Scholar 

  50. D. G. Cory, M. D. Price, and T. F. Havel, Physica D, 1998, 120: 82. In: Proceedings of the Fourth Workshop on Physics and Consumption

    Google Scholar 

  51. K. Dorai, Arvind, and A. Kumar, Phys. Rev. A, 2001, 63: 034101

    ADS  Google Scholar 

  52. R. Das, T. S. Mahesh, and A. Kumar, J. Magn. Res., 2002, 159: 46, ISSN 1090-7807

    ADS  Google Scholar 

  53. R. Das, T. S. Mahesh, and A. Kumar, Chem. Phys. Lett., 2003, 369: 8, ISSN 0009-2614

    ADS  Google Scholar 

  54. D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Nat. Acad. Sci. USA, 1997, 94: 1634

    ADS  Google Scholar 

  55. N. A. Gershenfeld and I. L. Chuang, Science, 1997, 275: 350

    MathSciNet  Google Scholar 

  56. E. Knill, I. Chuang, and R. Laflamme, Phys. Rev. A, 1998, 57: 3348

    MathSciNet  ADS  Google Scholar 

  57. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang, Phys. Rev. Lett., 2000, 85: 5452

    ADS  Google Scholar 

  58. X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, Phys. Rev. A, 2002, 65: 042315

    ADS  Google Scholar 

  59. X. Peng, X. Zhu, X. Fang, M. Feng, K. Gao, X. Yang, and M. Liu, Chem. Phys. Lett., 2001, 340: 509

    ADS  Google Scholar 

  60. Y. Sharf, T. F. Havel, and D. G. Cory, Phys. Rev. A, 2000, 62: 052314

    ADS  Google Scholar 

  61. U. Sakaguchi, H. Ozawa, and T. Fukumi, Phys. Rev. A, 2000, 61: 042313

    MathSciNet  ADS  Google Scholar 

  62. Z. L. Mádi, R. Brüschweiler, and R. R. Ernst, J. Chem. Phys., 1998, 109: 10603

    Google Scholar 

  63. X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, J. Chem. Phys., 2004, 120: 3579

    ADS  Google Scholar 

  64. E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng, Nature, 2000, 404: 368

    ADS  Google Scholar 

  65. B. M. Fung, Phys. Rev. A, 2001, 63: 022304

    MathSciNet  ADS  Google Scholar 

  66. X. Peng, X. Zhu, X. Fang, M. Feng, X. Yang, M. Liu, and K. Gao, arXiv: quant-ph/0202010, 2002

  67. W. S. Warren, Science, 1997, 277: 1688

    Google Scholar 

  68. D. Suter and T. S. Mahesh, J. Chem. Phys. 2008, 128: 052206

    ADS  Google Scholar 

  69. G. L. Long, H. Y. Yan, and Y. Sun, J. Opt. B, 2001, 3: 376

    ADS  Google Scholar 

  70. E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel, and D. G. Cory, J. Chem. Phys., 2002, 116: 7599

    ADS  Google Scholar 

  71. R. Das, T. S. Mahesh, and A. Kumar, Phys. Rev. A, 2003, 67: 062304

    ADS  Google Scholar 

  72. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science, 2001, 292: 472

    MathSciNet  ADS  Google Scholar 

  73. A. Mizel, D. A. Lidar, and M. Mitchell, Phys. Rev. Lett., 2007, 99: 070502

    ADS  Google Scholar 

  74. M. H. S. Amin, Phys. Rev. Lett., 2008, 100: 130503

    ADS  Google Scholar 

  75. J. Roland and N. J. Cerf, Phys. Rev. A, 2002, 65: 042308

    ADS  Google Scholar 

  76. M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang, Phys. Rev. Lett., 2003, 90: 067903

    ADS  Google Scholar 

  77. X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Phys. Rev. Lett., 2008, 101: 145501

    ADS  Google Scholar 

  78. A. Mitra, A. Ghosh, R. Das, A. Patel, and A. Kumar, J. Magn. Res., 2005, 177: 285

    ADS  Google Scholar 

  79. J. Roland and N. J. Cerf, Phys. Rev. A, 2005, 71: 032330

    MathSciNet  ADS  Google Scholar 

  80. A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A, 2001, 65: 012322

    ADS  Google Scholar 

  81. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979

    MATH  Google Scholar 

  82. M. Žnidariĉ and M. Horvat, Phys. Rev. A, 2006, 73: 022329

    ADS  Google Scholar 

  83. T. Hogg, Phys. Rev. A, 2003, 67: 022314

    ADS  Google Scholar 

  84. M. Žnidariĉ, Phys. Rev. A, 2005, 71: 062305

    ADS  Google Scholar 

  85. S. Blanes, F. Casas, J. Oteo, and J. Ros, Physics Reports, 2009, 470: 151

    MathSciNet  ADS  Google Scholar 

  86. M. Suzuki, Quantum Monte Carlo Methods in Condensed-Matter Physics, Singapore: World Scientific, 1993

    Google Scholar 

  87. W. K. Wootters, Phys. Rev. Lett., 1998, 80: 2245

    ADS  Google Scholar 

  88. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A, 2000, 61: 052306

    ADS  Google Scholar 

  89. P. Rungta and C.M. Caves, Phys. Rev. A, 2003, 67: 012307

    ADS  Google Scholar 

  90. P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A, 2001, 64: 042315

    MathSciNet  ADS  Google Scholar 

  91. W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A, 2000, 62: 062314

    MathSciNet  ADS  Google Scholar 

  92. B. M. Terhal, Phys. Lett. A, 2000, 271: 319

    MATH  MathSciNet  ADS  Google Scholar 

  93. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A, 1996, 223: 1

    MATH  MathSciNet  ADS  Google Scholar 

  94. M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys. Rev. A, 2000, 62: 052310

    ADS  Google Scholar 

  95. A. Sanpera, D. Bruβ, and M. Lewenstein, Phys. Rev. A, 2001, 63: 050301

    ADS  Google Scholar 

  96. S. Sachdev, Quantum Phase Transition, Cambridge: Cambrige: University Press, 1999

    Google Scholar 

  97. P. C. Canfield, Nature Phys., 2008, 4: 167

    ADS  Google Scholar 

  98. H. M. Ronnow, R. Parthasarathy, J. Jensen, G. Aeppli, T. F. Rosenbaum, and D. F. McMorrow, Science, 2005, 308: 389

    ADS  Google Scholar 

  99. J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, Nature, 2003, 424: 524

    ADS  Google Scholar 

  100. A. Yeh, Y. A. Soh, J. Brooke, G. Aeppli, T. F. Rosenbaum, and S. M. Hayden, Nature, 2002, 419: 459

    ADS  Google Scholar 

  101. T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nature Phys., 2008, 4: 198

    ADS  Google Scholar 

  102. P. Gegenwart, Q. Si, and F. Steglich, Nature Phys., 2008, 4: 186

    ADS  Google Scholar 

  103. S. Sachdev, Nature Phys., 2008, 4: 173

    ADS  Google Scholar 

  104. D. M. Broun, Nature Phys., 2008, 4: 170

    ADS  Google Scholar 

  105. Editorial, Nature Phys., 2008, 4: 157

    Google Scholar 

  106. A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature, 2002, 416: 608

    ADS  Google Scholar 

  107. T. J. Osborne and M. A. Nielsen, Phys. Rev. A, 2002, 66: 032110

    MathSciNet  ADS  Google Scholar 

  108. M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett., 2001, 87: 017901

    ADS  Google Scholar 

  109. R. Somma, G. Ortiz, H. Barnum, E. Knill, and L. Viola, Phys. Rev. A, 2004, 70: 042311

    MathSciNet  ADS  Google Scholar 

  110. S. J. Gu, S. S. Deng, Y. Q. Li, and H. Q. Lin, Phys. Rev. Lett., 2004, 93: 086402

    ADS  Google Scholar 

  111. F. Gebbhard, The Mott Metal-Insulator Transition: Models and Methods, New York: Springer-Verlag, 1997

    Google Scholar 

  112. R. B. Laughlin, Phys. Rev. Lett., 1983, 50: 1395

    ADS  Google Scholar 

  113. L. Zhou, H. S. Song, Y. Q. Guo, and C. Li, Phys. Rev. A, 2003, 68: 024301

    ADS  Google Scholar 

  114. X. Wang, Phys. Rev. A, 2002, 66: 034302

    ADS  Google Scholar 

  115. G. Lagmago Kamta and A. F. Starace, Phys. Rev. Lett., 2002, 88: 107901

    ADS  Google Scholar 

  116. R. J. Baxter and F. Y. Wu, Phys. Rev. Lett., 1973, 31: 1294

    ADS  Google Scholar 

  117. F. Igloi, J. Phys. A: Math. Gen., 1987, 20: 5319

    MathSciNet  ADS  Google Scholar 

  118. P. Lou, W. C. Wu, and M. C. Chang, Phys. Rev. B, 2004, 70: 064405

    ADS  Google Scholar 

  119. P. Suranyi, Phys. Rev. Lett., 1976, 37: 725

    ADS  Google Scholar 

  120. C. D’Cruz and J. K. Pachos, Phys. Rev. A, 2005, 72: 043608

    ADS  Google Scholar 

  121. D. I. Tsomokos, J. J. García-Ripoll, N. R. Cooper, and J. K. Pachos, Phys. Rev. A, 2008, 77: 012106

    ADS  Google Scholar 

  122. J. K. Pachos and E. Rico, Phys. Rev. A, 2004, 70: 053620

    ADS  Google Scholar 

  123. J. K. Pachos and M. B. Plenio, Phys. Rev. Lett., 2004, 93: 056402

    ADS  Google Scholar 

  124. H. P. Buchler, A. Micheli, and P. Zoller, Nature Phys., 2007, 3: 726

    ADS  Google Scholar 

  125. J. C. Anglès d’Auriac and F. Iglói, Phys. Rev. E, 1998, 58: 241

    ADS  Google Scholar 

  126. K. A. Penson, R. Jullien, and P. Pfeuty, Phys. Rev. B, 1982, 26: 6334

    ADS  Google Scholar 

  127. K. A. Penson, J. M. Debierre, and L. Turban, Phys. Rev. B, 1988, 37: 7884

    ADS  Google Scholar 

  128. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature, 2001, 414: 883

    ADS  Google Scholar 

  129. J. Zhang, et al., Phys. Rev. Lett., 2008, 100

  130. N. Linden, E. Kupce, and R. Freeman, Chem. Phys. Lett., 1999, 311: 321

    ADS  Google Scholar 

  131. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, Proc. R. Soc. Lond. A, 1998, 454: 447

    MATH  ADS  Google Scholar 

  132. G. Teklemariam, E. M. Fortunato, M. A. Pravia, T. F. Havel, and D. G. Cory, Phys. Rev. Lett., 2001, 86: 5845

    ADS  Google Scholar 

  133. A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, Nature Phys., 2008, 4: 757

    ADS  Google Scholar 

  134. F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A, 2002, 65: 052112

    MathSciNet  ADS  Google Scholar 

  135. O. Osenda, Z. Huang, and S. Kais, Phys. Rev. A, 2003, 67: 062321

    ADS  Google Scholar 

  136. Z. Y. Sun, K. L. Yao, W. Yao, D. H. Zhang, and Z. L. Liu, Phys. Rev. B, 2008, 77: 014416

    ADS  Google Scholar 

  137. V. Subrahmanyam, Phys. Rev. A, 2004, 69: 022311

    ADS  Google Scholar 

  138. F. C. Alcaraz, A. Saguia, and M. S. Sarandy, Phys. Rev. A, 2004, 70: 032333

    ADS  Google Scholar 

  139. X. Wang, Phys. Rev. A, 2001, 64: 012313

    ADS  Google Scholar 

  140. J. Zhao, I. Peschel, and X. Wang, Phys. Rev. B, 2006, 73: 024405

    ADS  Google Scholar 

  141. A. Kopp and K. L. Hur, Phys. Rev. Lett., 2007, 98: 220401

    ADS  Google Scholar 

  142. X. Jia, A. R. Subramaniam, I. A. Gruzberg, and S. Chakravarty, Phys. Rev. B, 2008, 77: 014208

    ADS  Google Scholar 

  143. L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Phys. Rev. A, 2007, 75: 052321

    ADS  Google Scholar 

  144. C. Wellard and R. Orùs, Phys. Rev. A, 2004, 70: 062318

    ADS  Google Scholar 

  145. J. I. Latorre, E. Rico, and G. Vidal, Quant. Inf. Comput., 2004, 4: 48

    MATH  MathSciNet  Google Scholar 

  146. G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett., 2003, 90: 227902

    ADS  Google Scholar 

  147. M. F. Yang, Phys. Rev. A, 2005, 71: 030302

    ADS  Google Scholar 

  148. T. R. de Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A, 2006, 73: 010305(R)

    Google Scholar 

  149. D. A. Meyer and N. R. Wallach, Journal of Mathematical Physics, 2002, 43: 4273

    MATH  MathSciNet  ADS  Google Scholar 

  150. X. Peng, X. Zhu, D. Suter, J. Du, M. Liu, and K. Gao, Phys. Rev. A, 2005, 72: 052109

    ADS  Google Scholar 

  151. G. Schaller, Phys. Rev. A, 2008, 78: 032328

    MathSciNet  ADS  Google Scholar 

  152. R. Schützhold and G. Schaller, Phys. Rev. A, 2006, 74: 060304

    ADS  Google Scholar 

  153. J. I. Latorre and R. Orùs, Phys. Rev. A, 2004, 69: 062302

    ADS  Google Scholar 

  154. T. Caneva, R. Fazio, and G. E. Santoro, arXiv: 0706. 1832v1, 2007

  155. Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe

  156. H. G. Krojanski and D. Suter, Phys. Rev. Lett., 2004, 93: 090501

    ADS  Google Scholar 

  157. H. G. Krojanski and D. Suter, Phys. Rev. Lett., 2006, 97: 150503

    ADS  Google Scholar 

  158. H. G. Krojanski and D. Suter, Phys. Rev. A, 2006, 74: 062319

    ADS  Google Scholar 

  159. M. Lovric, H. G. Krojanski, and D. Suter, Phys. Rev. A, 2007, 75: 042305

    ADS  Google Scholar 

  160. R. Gulde, M. Riebe, G. Lancaster, C. Becher, J. Eschner, H. H. F. Schmidt-Kaler, I. Chuang, and R. Blatt, Nature (London), 2003, 421: 48

    ADS  Google Scholar 

  161. P. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett., 2001, 87: 067401

    ADS  Google Scholar 

  162. E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion, and D. Esteve, Phys. Rev. Lett., 2004, 93: 157005

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Suter.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11467-010-0103-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Xh., Suter, D. Spin qubits for quantum simulations. Front. Phys. China 5, 1–25 (2010). https://doi.org/10.1007/s11467-009-0067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0067-x

Keywords

Navigation