Skip to main content
Log in

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication based on molecular dynamic simulation

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication (MQL). However, the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence. Here, molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL, MQL, and dry grinding conditions. Three kinds of carbon group nanoparticles, i.e., nanodiamond (ND), carbon nanotube (CNT), and graphene nanosheet (GN), were taken as representative specimens. The [BMIM]BF4 ionic liquid was used as base fluid. The materials used as workpiece and abrasive grain were the single-crystal Ni-Fe-Cr series of Ni-based alloy and single-crystal cubic boron nitride (CBN), respectively. Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions. The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film. Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition, with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face. The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area. Under the nanofluid MQL condition, the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface. The behaviors involved the rolling effect of ND, the rolling and sliding effects of CNT, and the interlayer shear effect of GN. Compared with the findings under the MQL condition, the tangential grinding forces could be further reduced by 8.5%, 12.0%, and 14.1% under the diamond, CNT, and graphene nanofluid MQL conditions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CBN:

Cubic boron nitride

CFRP:

Carbon fiber-reinforced polymer

CNT:

Carbon nanotube

CNT-MQL:

Carbon nanotube nanofluid minimum quantity lubrication

DN-MQL:

Diamond nanofluid minimum quantity lubrication

EDS:

Energy dispersive spectrometer

GN:

Graphene nanosheet

GN-MQL:

Graphene nanofluid minimum quantity lubrication

LJ:

Lennard—Jones

MQL:

Minimum quantity lubrication

MWCNT:

Multi-walled carbon nanotube

ND:

Nanodiamond

NMQL:

Nanofluid minimum quantity lubrication

SEM:

Scanning electron microscope

A 1 :

Action area of lubricating film

A s :

Contact area between abrasive grain and workpiece

D :

Binding energy coefficient

E :

Total energy

F :

Embedding energy

F f :

Frictional force

K r :

Bond-stretching energy coefficient

K θ :

Bond angle-bending energy coefficient

K ϕ :

Torsion energy coefficient

n :

Multiphase factor

N :

Total amount of atoms in the system

q i, q j :

Electrical charges of the atoms i and j, respectively

r :

Bond length

r 0 :

Equilibrium bond length

r ij :

Distance between atoms i and j

R :

Pair interactions

t i :

Chemical species (Fe, Ni, or Cr)

V :

Volume of the sphere

α :

Gradient coefficient of potential energy curve

γ :

Equilibrium dihedral angle

ε ij :

Traditional well-depth

θ :

Bond angle

θ 0 :

Equilibrium bond angle

ρ i :

Local electron density around atom i

σ ij :

Distance between atoms i and j

σ v :

von Mises equivalent stress

τ 1 :

Viscous resistance of ionic liquid

τ s :

Shear strength of workpiece material

References

  1. Sánchez J A, Pombo I, Alberdi R, Izquierdo B, Ortega N, Plaza S, Martinez-Toledano J. Machining evaluation of a hybrid MQL-CO2 grinding technology. Journal of Cleaner Production, 2010, 18: 1840–1849

    Article  Google Scholar 

  2. Hamran N N N, Ghani J A, Ramli R, Che Haron C H. A review on recent development of minimum quantity lubrication for sustainable machining. Journal of Cleaner Production, 2020, 268: 122165

    Article  Google Scholar 

  3. Jia D Z, Li C H, Zhang D K, Wang S, Hou Y L. Investigation into the formation mechanism and distribution characteristics of suspended microparticles in MQL grinding. Recent Patents on Mechanical Engineering, 2014, 7(1): 52–62

    Article  Google Scholar 

  4. Yin Q A, Li C H, Dong L, Bai X F, Zhang Y B, Yang M, Jia D Z, Li R Z, Liu Z Q. Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(6): 1629–1647

    Article  Google Scholar 

  5. Stachurski W, Sawicki J, Januszewicz B, Rosik R. The influence of the depth of grinding on the condition of the surface layer of 20MnCr5 steel ground with the minimum quantity lubrication (MQL) method. Materials, 2022, 15(4): 1336

    Article  Google Scholar 

  6. Hadad M, Sadeghi B. Thermal analysis of minimum quantity lubrication-MQL grinding process. International Journal of Machine Tools and Manufacture, 2012, 63: 1–15

    Article  Google Scholar 

  7. Zhang J C, Wu W T, Li C H, Yang M, Zhang Y B, Jia D Z, Hou Y L, Li R Z, Cao H J, Ali H M. Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti-6Al-4V. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(4): 1113–1135

    Article  Google Scholar 

  8. Tawakoli T, Hadad M J, Sadeghi M H. Influence of oil mist parameters on minimum quantity lubrication—MQL grinding process. International Journal of Machine Tools and Manufacture, 2010, 50(6): 521–531

    Article  Google Scholar 

  9. Zhang X Z, Huang W, Liu Q G. Heat Transfer Theory. Beijing: National Defense Industry Press, 2011 (in Chinese)

    Google Scholar 

  10. Pimenov D Y, Mia M, Gupta M K, Machado A R, Tomaz Í V, Sarikaya M, Wojciechowski S, Mikolajczyk T, Kaplonek W. Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. Journal of Materials Research and Technology, 2021, 11: 719–753

    Article  Google Scholar 

  11. Nwoguh T O, Okafor A C, Onyishi H A. Enhancement of viscosity and thermal conductivity of soybean vegetable oil using nanoparticles to form nanofluids for minimum quantity lubrication machining of difficult-to-cut metals. The International Journal of Advanced Manufacturing Technology, 2021, 113(11–12): 3377–3388

    Article  Google Scholar 

  12. Sui M H, Li C H, Wu W T, Yang M, Ali H M, Zhang Y B, Jia D Z, Hou Y L, Li R Z, Cao H J. Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication. Journal of Thermal Science and Engineering Applications, 2021, 13(5): 051001

    Article  Google Scholar 

  13. Li B K, Li C H, Zhang Y B, Wang Y G, Jia D Z, Yang M, Zhang N Q, Wu Q D, Han Z G, Sun K. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 2017, 154: 1–11

    Article  Google Scholar 

  14. Chinchanikar S, Kore S S, Hujare P. A review on nanofluids in minimum quantity lubrication machining. Journal of Manufacturing Processes, 2021, 68: 56–70

    Article  Google Scholar 

  15. Zhang Y B, Li H N, Li C H, Huang C Z, Ali H M, Xu X F, Mao C, Ding W F, Cui X, Yang M, Yu T B, Jamil M, Gupta M K, Jia D Z, Said Z. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction, 2022, 10(6): 803–841

    Article  Google Scholar 

  16. Virdi R L, Chatha S S, Singh H. Experiment evaluation of grinding properties under Al2O3 nanofluids in minimum quantity lubrication. Materials Research Express, 2019, 6(9): 096574

    Article  Google Scholar 

  17. Virdi R L, Chatha S S, Singh H. Performance evaluation of nanofluid-based minimum quantity lubrication grinding of Ni-Cr alloy under the influence of CuO nanoparticles. Advances in Manufacturing, 2021, 9(4): 580–591

    Article  Google Scholar 

  18. Zhang Z C, Sui M H, Li C H, Zhou Z M, Liu B, Chen Y, Said Z, Debnath S, Sharma S. Residual stress of grinding cemented carbide using MoS2 nano-lubricant. The International Journal of Advanced Manufacturing Technology, 2022, 119(9–10): 5671–5685

    Article  Google Scholar 

  19. Dambatta Y S, Sayuti M, Sarhan A A D, Hamdi M, Manladan S M, Reddy M. Tribological performance of SiO2-based nanofluids in minimum quantity lubrication grinding of Si3N4 ceramic. Journal of Manufacturing Processes, 2019, 41: 135–147

    Article  Google Scholar 

  20. Pashmforoush F, Delir Bagherinia R. Influence of water-based copper nanofluid on wheel loading and surface roughness during grinding of Inconel 738 superalloy. Journal of Cleaner Production, 2018, 178: 363–372

    Article  Google Scholar 

  21. Prabu L, Saravanakumar N, Rajaram G. Influence of Ag nanoparticles for the anti-wear and extreme pressure properties of the mineral oil based nano-cutting fluid. Tribology in Industry, 2018, 40(3): 440–447

    Article  Google Scholar 

  22. Hegab H, Kishawy H A, Gadallah M H, Umer U, Deiab I. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication. The International Journal of Advanced Manufacturing Technology, 2018, 97(5–8): 1593–1603

    Article  Google Scholar 

  23. Gao T, Li C H, Jia D Z, Zhang Y B, Yang M, Wang X M, Cao H J, Li R Z, Ali H M, Xu X F. Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. Journal of Cleaner Production, 2020, 277: 123328

    Article  Google Scholar 

  24. Gao T, Zhang X P, Li C H, Zhang Y B, Yang M, Jia D Z, Ji H J, Zhao Y J, Li R Z, Yao P, Zhu L D. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. Journal of Manufacturing Processes, 2020, 51: 44–61

    Article  Google Scholar 

  25. de Paiva R L, de Souza Ruzzi R, de Oliveira L R, Bandarra Filho E P, Gonçalves Neto L M, Gelamo R V, da Silva R B. Experimental study of the influence of graphene platelets on the performance of grinding of SAE 52100 steel. The International Journal of Advanced Manufacturing Technology, 2020, 110(1–2): 1–12

    Article  Google Scholar 

  26. Lee P H, Nam T S, Li C J, Lee S W. Environmentally-friendly nano-fluid minimum quantity lubrication (MQL) meso-scale grinding process using nano-diamond particles. In: Proceedings of 2010 International Conference on Manufacturing Automation, 2010, 44–49

  27. Wang Y G, Li C H, Zhang Y B, Li B K, Yang M, Zhang X P, Guo S M, Liu G T. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribology International, 2016, 99: 198–210

    Article  Google Scholar 

  28. Lee P H, Nam J S, Li C J, Lee S W. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 2012, 13(3): 331–338

    Article  Google Scholar 

  29. Shen B, Shih A J, Tung S C. Application of nanofluids in minimum quantity lubrication grinding. Tribology Transactions, 2008, 51(6): 730–737

    Article  Google Scholar 

  30. Kumar M K, Ghosh A. On grinding force ratio, specific energy, G-ratio and residual stress in SQCL assisted grinding using aerosol of MWCNT nanofluid. Machining Science and Technology, 2021, 25(4): 585–607

    Article  Google Scholar 

  31. Huang W T, Liu W S, Wu D H. Investigations into lubrication in grinding processes using MWCNTs nanofluids with ultrasonic-assisted dispersion. Journal of Cleaner Production, 2016, 137: 1553–1559

    Article  Google Scholar 

  32. Gao T, Li C H, Yang M, Zhang Y B, Jia D Z, Ding W F, Debnath S, Yu T B, Said Z, Wang J. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. Journal of Materials Processing Technology, 2021, 290: 116976

    Article  Google Scholar 

  33. Singh H, Sharma V S, Dogra M. Exploration of graphene assisted vegetables oil based minimum quantity lubrication for surface grinding of Ti-6Al-4V-ELI. Tribology International, 2020, 144: 106113

    Article  Google Scholar 

  34. Li M, Yu T B, Zhang R C, Yang L, Ma Z L, Li B C, Wang X Z, Wang W S, Zhao J. Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid. Journal of Cleaner Production, 2020, 244: 118747

    Article  Google Scholar 

  35. De Oliveira D, Da Silva R B, Gelamo R V. Influence of multilayer graphene platelet concentration dispersed in semi-synthetic oil on the grinding performance of Inconel 718 alloy under various machining conditions. Wear, 2019, 426–427, Part B: 1371–1383

    Article  Google Scholar 

  36. Singh A K, Kumar A, Sharma V, Kala P. Sustainable techniques in grinding: state of the art review. Journal of Cleaner Production, 2020, 269: 121876

    Article  Google Scholar 

  37. Ren J, Hao M R, Lv M, Wang S Y, Zhu B Y. Molecular dynamics research on ultra-high-speed grinding mechanism of monocrystalline nickel. Applied Surface Science, 2018, 455: 629–634

    Article  Google Scholar 

  38. Doan D Q, Fang T H, Chen T H. Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics. Journal of Manufacturing Processes, 2022, 74: 423–440

    Article  Google Scholar 

  39. Peng R T, Tong J W, Zhao L F, Tang X Z, Peng X, He X B. Molecular dynamics study on the adsorption synergy of MWCNTs/MoS2 nanofluids and its influence of internal-cooling grinding surface integrity. Applied Surface Science, 2021, 563: 150312

    Article  Google Scholar 

  40. Wang D X, Sun S F, Tang Y Z, Liu X F, Jiang J L. Molecular dynamics simulation for grinding interface under minimum quantity lubrication. Journal of Xi’an Jiaotong University, 2020, 54(12): 168–175 (in Chinese)

    Google Scholar 

  41. Fan Y H, Wang W Y, Hao Z P, Zhan C Y. Work hardening mechanism based on molecular dynamics simulation in cutting Ni-Fe-Cr series of Ni-based alloy. Journal of Alloys and Compounds, 2020, 819: 153331

    Article  Google Scholar 

  42. Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I, Fasolino A. Extended Tersoff potential for boron nitride: energetics and elastic properties of pristine and defective h-BN. Physical Review B, 2017, 96(18): 184108

    Article  Google Scholar 

  43. Bonny G, Terentyev D, Pasianot R C, Poncé S, Bakaev A. Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy. Modelling and Simulation in Materials Science and Engineering, 2011, 19(8): 085008

    Article  Google Scholar 

  44. Liu Z P, Huang S P, Wang W C. A refined force field for molecular simulation of imidazolium-based ionic liquids. The Journal of Physical Chemistry B, 2004, 108(34): 12978–12989

    Article  Google Scholar 

  45. Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Physical Review B, 1988, 38(14): 9902–9905

    Article  Google Scholar 

  46. Chang X. Ripples of multilayer graphenes: a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102

    Article  Google Scholar 

  47. Hao Z P, Cui R R, Fan Y H, Lin J Q. Diffusion mechanism of tools and simulation in nanoscale cutting the Ni-Fe-Cr series of Nickel-based superalloy. International Journal of Mechanical Sciences, 2019, 150: 625–636

    Article  Google Scholar 

  48. Liang T, Zhang P, Yuan P, Zhai S P. In-plane thermal transport in black phosphorene/graphene layered heterostructures: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20(32): 21151–21162

    Article  Google Scholar 

  49. Wang D X, Zhao Q L, Zhang Y, Gao T, Jiang J L, Liu G L, Li C H. Investigation on tribological mechanism of ionic liquid on grinding interfaces under MQL. China Mechanical Engineering, 2022, 33(5): 560–568, 606 (in Chinese)

    Google Scholar 

  50. Yuan S M, Hou X B, Wang L, Chen B C. Experimental investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining. Tribology Letters, 2018, 66(3): 106

    Article  Google Scholar 

  51. Jia D Z, Li C H, Zhang D K, Zhang Y B, Zhang X W. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. Journal of Nanoparticle Research, 2014, 16(12): 2758

    Article  Google Scholar 

  52. Pavan R B, Venu Gopal A, Amrita M, Goriparthi B K. Experimental investigation of graphene nanoplatelets-based minimum quantity lubrication in grinding Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(2): 400–410

    Article  Google Scholar 

  53. Ibrahim A M M, Li W, Xiao H, Zeng Z X, Ren Y H, Alsoufi M S. Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/graphene nano additive and minimum quantity lubrication. Tribology International, 2020, 150: 106387

    Article  Google Scholar 

  54. Moore D F. Principles and Applications of Tribology. Pergamon: Elsevier, 1975

    Google Scholar 

  55. Wang Y G, Li C H, Zhang Y B, Li B K, Yang M, Zhang X P, Guo S M, Liu G T, Zhai M G. Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. Journal of Manufacturing Processes, 2017, 26: 94–104

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51705272), the China Postdoctoral Science Foundation (Grant No. 2018M642628), the 111 Project (Grant No. D21017), and the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University, China (Grant No. Kfkt2020-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhe Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhang, Y., Zhao, Q. et al. Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication based on molecular dynamic simulation. Front. Mech. Eng. 18, 17 (2023). https://doi.org/10.1007/s11465-022-0733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0733-z

Keywords

Navigation