Skip to main content
Log in

Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles (Cu NPs) on polyethylene terephthalate polymer film. These materials are commonly used in manufacturing functional printed electronics for large-area applications. Here, optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions. Direct diode (808 nm), Nd:YAG (1064 nm and second harmonic of 532 nm), and ytterbium fiber (1070 nm) lasers are explored. Optimal parameters for sintering the Cu NPs are identified for each laser system, which targets low resistivity and high processing speed. Finally, the quality of the sintered tracks is quantified, and the laser sintering mechanisms observed under different wavelengths are analyzed. Practical considerations are discussed to improve the laser sintering process of Cu NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko S H, Pan H, Grigoropoulos C P, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18(34): 345202

    Article  Google Scholar 

  2. Buffat P, Borel J P. Size effect on the melting temperature of gold particles. Physical Review A, 1976, 13(6): 2287–2298

    Article  Google Scholar 

  3. Bieri N R, Chung J, Haferl S E, et al. Microstructuring by printing and laser curing of nanoparticle solutions. Applied Physics Letters, 2003, 82(20): 3529–3531

    Article  Google Scholar 

  4. Kim T Y, Hwang J Y, Moon S J. Laser curing of the silver/copper nanoparticle ink via optical property measurement and calculation. Japanese Journal of Applied Physics, 2010, 49(5S1): 05EA09(1–6)

    Article  Google Scholar 

  5. Bieri N R, Chung J, Poulikakos D, et al. An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks. Applied Physics A, 2005, 80(7): 1485–1495

    Article  Google Scholar 

  6. Kim M K, Kang H, Kang K, et al. Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates. In: Proceedings of the 10th IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010

    Google Scholar 

  7. Chung J, Bieri N R, Ko S, et al. In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Applied Physics A, 2004, 79(4–6): 1259–1261

    Article  Google Scholar 

  8. Ko S H, Pan H, Grigoropoulos C P, et al. Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Applied Physics Letters, 2007, 90(14): 141103–141105

    Article  Google Scholar 

  9. Bieri N R, Chung J, Poulikakos D, et al. Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices and Microstructures, 2004, 35(3–6): 437–444

    Article  Google Scholar 

  10. Choi T Y, Poulikakos D, Grigoropoulos C P. Fountain-pen-based laser microstructuring with gold nanoparticle inks. Applied Physics Letters, 2004, 85(1): 13–15

    Article  Google Scholar 

  11. Chung J, Ko S, Bieri N R, et al. Conductor microstructures by laser curing of printed gold nanoparticle ink. Applied Physics Letters, 2004, 84(5): 801–803

    Article  Google Scholar 

  12. Ko S H, Chung J, Pan H, et al. Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sensors and Actuators A: Physical, 2007, 134(1): 161–168

    Article  Google Scholar 

  13. Ko S H, Pan K, Hwang D J, et al. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. Journal of Applied Physics, 2007, 102: 093102

    Article  Google Scholar 

  14. Alemohammad H, Aminfar O, Toyserkani E. Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition. Journal of Micromechanics and Microengineering, 2008, 18(11): 115015

    Article  Google Scholar 

  15. Kumpulainen T, Pekkanen J. Utilization of 515 nm pulsed fiber laser for low temperature nanoparticle sintering. In: Proceedings of the 27th International Congress on Applications of Lasers & Electro-Optics. Temecula: Laser Institute of America, 2008

    Google Scholar 

  16. Son Y, Lim T W, Yeo J, et al. Fabrication of nano-scale conductors by selective femtosecond laser sintering of metal nanoparticles. In: Proceedings of the 10th IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010

    Google Scholar 

  17. Kumpulainen T, Pekkanen J, Valkama J, et al. Low temperature nanoparticle sintering with continuous wave and pulse lasers. Optics & Laser Technology, 2011, 43(3): 570–576

    Article  Google Scholar 

  18. Lesyuk R, Jillek W, Bobitski Y, et al. Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectronic Engineering, 2011, 88(3): 318–321

    Article  Google Scholar 

  19. Niizeki T, Maekawa K, Mita M, et al. Laser sintering of Ag nanopaste film and its application to bond-pad formation. In: Proceedings of the 58th Electronic Components and Technology Conference. Lake Buena Vista: IEEE, 2008, 1745–1750

    Google Scholar 

  20. Kim M K, Hwang J Y, Kang H, et al. Laser sintering of the printed silver ink. In: Proceedings of the 2009 IEEE International Symposium on Assembly and Manufacturing. Suwon: IEEE, 2009, 155–158

    Chapter  Google Scholar 

  21. Laakso P, Ruotsalainen S, Halonen E, et al. Sintering of printed nanoparticle structures using laser treatment. In: Proceedings of the 28th International Congress on Applications of Lasers & Electro-Optics. Orlando, 2009

  22. Aminuzzaman M, Watanabe A, Miyashita T. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film. Journal of Nanoparticle Research, 2010, 12(3): 931–938

    Article  Google Scholar 

  23. Tsutsui Y, Yamasaki K, Maekawa K, et al. Size effect of Ag nanoparticles on laser sintering and wire bondability. In: Proceedings of the 60th Electronic Components and Technology Conference (ECTC 2010). Las Vegas: IEEE, 2010, 1870–1876

    Chapter  Google Scholar 

  24. Yoon Y H, Yi S M, Yim J R, et al. Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films. Microelectronic Engineering, 2010, 87(11): 2230–2233

    Article  Google Scholar 

  25. Kang B, Kno J, Yang M. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate. Journal of Micromechanics and Microengineering, 2011, 21(7): 075017

    Article  Google Scholar 

  26. Kang B, Ko S, Kim J, et al. Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Optics Express, 2011, 19(3): 2573–2579

    Article  Google Scholar 

  27. Kim M G, Kanatzidis M G, Facchetti A, et al. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Materials, 2011, 10(5): 382–388

    Article  Google Scholar 

  28. Lee D G, Kim D K, Moon Y J, et al. Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Thin Solid Films, 2013, 546: 443–447

    Article  Google Scholar 

  29. Niittynen J, Abbel R, Mäntysalo M, et al. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 2014, 556: 452–459

    Article  Google Scholar 

  30. Qin G, Watanabe A. Conductive network structure formed by laser sintering of silver nanoparticles. Journal of Nanoparticle Research, 2014, 16(11): 2684

    Article  Google Scholar 

  31. Yung K C, Plura T S. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles. Applied Physics A, 2010, 101(2): 393–397

    Article  Google Scholar 

  32. Joo M, Lee B, Jeong S, et al. Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films, 2012, 520(7): 2878–2883

    Article  Google Scholar 

  33. Lee J, Lee B, Jeong S, et al. Microstructure and electrical property of laser-sintered Cu complex ink. Applied Surface Science, 2014, 307: 42–45

    Article  Google Scholar 

  34. Lee J, Lee B, Jeong S, et al. Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering. Thin Solid Films, 2014, 564: 264–268

    Article  Google Scholar 

  35. Yu J H, Kang K T, Hwang J Y, et al. Rapid sintering of copper nano ink using a laser in air. International Journal of Precision Engineering and Manufacturing, 2014, 15(6): 1051–1054

    Article  Google Scholar 

  36. Intrinsiq Materials. Screen print copper paste for PV metalisation. Available at Intrinsiq Materials website on September 15, 2019

  37. Soltani A, Khorramdel Vahed B, Mardoukhi A, et al. Laser sintering of copper nanoparticles on top of silicon substrates. Nanotechnology, 2016, 27(3): 035203

    Article  Google Scholar 

  38. Kwon J, Cho H, Eom H, et al. Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Applied Materials & Interfaces, 2016, 8(18): 11575–11582

    Article  Google Scholar 

  39. Cheng C W, Chen J K. Femtosecond laser sintering of copper nanoparticles. Applied Physics A, 2016, 122(4): 289

    Article  MathSciNet  Google Scholar 

  40. Roy N K, Dibua O G, Jou W, et al. A comprehensive study of the sintering of copper nanoparticles using femtosecond, nanosecond, and continuous wave lasers. Journal of Micro and Nano-Manufacturing, 2017, 6(1): 010903

    Article  Google Scholar 

  41. Roy N K, Dibua O G, Foong C S, et al. Preliminary results on the fabrication of interconnect structures using microscale selective laser sintering. In: Proceedings of ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. San Francisco: ASME, 2017, IPACK2017–74173, V001T01A001

    Google Scholar 

  42. Roy N K, Jou W, Feng H, et al. Laser sintering of copper nanoparticles: A simplified model for fluence estimation and validation. In: Proceedings of the 12th International Manufacturing Science and Engineering Conference. Los Angeles: ASME, 2017, MSEC2017–2975, V002T01A032

    Google Scholar 

  43. Perry R H. Perry’s Chemical Engineers’ Handbook. 7th ed. New York: McGraw-Hill, 1997

    Google Scholar 

  44. Shyjumon I, Gopinadhan M, Ivanova O, et al. Structural deformation, melting point and lattice parameter studies of size selected silver clusters. European Physical Journal D, 2006, 37(3): 409–415

    Article  Google Scholar 

  45. Son Y, Yeo J, Moon H, et al. Nanoscale electronics: Digital fabrication by direct femtosecond laser processing of metal nanoparticles. Advanced Materials, 2011, 23(28): 3176–3181

    Article  Google Scholar 

  46. Lawrence Yao Y, Chen H, Zhang W. Time scale effects in laser material removal: A review. International Journal of Advanced Manufacturing Technology, 2005, 26(5–6): 598–608

    Google Scholar 

  47. Hu M, Hartland G V. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. Journal of Physical Chemistry B, 2002, 106(28): 7029–7033

    Article  Google Scholar 

  48. Kang J S, Kim H S, Ryu J, et al. Inkjet printed electronics using copper nanoparticle ink. Journal of Materials Science Materials in Electronics, 2010, 21(11): 1213–1220

    Article  Google Scholar 

  49. MacDonald W A. Engineered films for display technologies. Journal of Materials Chemistry, 2004, 14(1): 4–10

    Article  MathSciNet  Google Scholar 

  50. Bäuerle D. Laser Processing and Chemistry. Berlin: Springer, 2011, 739–781

    Book  Google Scholar 

  51. Min H, Lee B, Jeong S, et al. Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate. Optics and Lasers in Engineering, 2016, 80: 12–16

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author, Hongyu Zheng, would like to acknowledge the grant support of Shandong Taishan Scholar Scheme (Grant No. ts20190401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Castaneda, J.C., Lok, B.K. & Zheng, H. Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions. Front. Mech. Eng. 15, 303–318 (2020). https://doi.org/10.1007/s11465-019-0562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-019-0562-x

Keywords

Navigation