Skip to main content
Log in

Cylindrical particulate internal flows: A review

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The study of cylindrical particulate internal flows has wide industrial applicability hence received much attention. This article reviews the cylindrical particulate internal flows over the past twenty years. The research is related to the cylindrical particulate flows in the straight channel, curved channel and rotational channel. Finally, several open research issues have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altan M C, Guceri S I, Pipes R B. Anisotropic channel flow of fiber suspensions. Journal of Non-Newtonian Fluid Mechanics, 1992, 42(1,2): 65–83

    Article  MATH  Google Scholar 

  2. Oosthuizen P H, Chen S, Kuhn D C S. Fluid and fiber flow near a wall slot in a channel. Pulp & Paper-Canada, 1994, 95(5): 27–30

    Google Scholar 

  3. Tang L, Altan M C. Entry flow of fiber suspensions in a straight channel. Journal of Non-Newtonian Fluid Mechanics, 1995, 56(2): 183–216

    Article  Google Scholar 

  4. Develter P G, Duffy G G. Flow of wood pulp fiber suspensions in open channels. Appita Journal, 1998, 51(5): 356–362

    Google Scholar 

  5. Chiba K, Yasuda K, Nakamura K. Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution. Journal of Non-Newtonian Fluid Mechanics, 2001, 99(2,3): 145–157

    Article  MATH  Google Scholar 

  6. Lin J Z, Li J, Zhang W F. Orientation distribution of fibers in a channel flow of fiber suspension. Chinese Physics, 2005, 14(12): 2529–2538

    Article  Google Scholar 

  7. Park J, Butler J E. Inhomogeneous distribution of a rigid fiber undergoing rectilinear flow between parallel walls at high Peclet numbers. Journal of Fluid Mechanics, 2009, 630: 267–298

    Article  MathSciNet  MATH  Google Scholar 

  8. Krochak P J, Olson J A, Martinez D M. Near-wall estimates of the concentration and orientation distribution of a semi-dilute rigid fiber suspension in Poiseuille flow. Journal of Fluid Mechanics, 2010, 653: 431–462

    Article  MATH  Google Scholar 

  9. Manhart M. Rheology of suspensions of rigid-rod like particles in turbulent channel flow. Journal of Non-Newtonian Fluid Mechanics, 2003, 112(2,3): 269–293

    Article  MATH  Google Scholar 

  10. Xu H J, Aidun C K. Characteristics of fiber suspension flow in a rectangular channel. International Journal of Multiphase Flow, 2005, 31(3): 318–336

    Article  MATH  Google Scholar 

  11. Lin J Z, Gao Z Y, Zhou K, Chan T L. Mathematical modeling of turbulent fiber suspension and successive iteration solution in the channel flow. Applied Mathematical Modelling, 2006, 30(9): 1010–1020

    Article  MATH  Google Scholar 

  12. Zhang H F, Ahmadi G, Asgharian B. Transport and deposition of angular fibers in turbulent channel flows. Aerosol Science and Technology, 2007, 41(5): 529–548

    Article  Google Scholar 

  13. Gillissen J J J, Boersma B J, Mortensen P H, Andersson H I. The stress generated by non-Brownian fibers in turbulent channel flow simulations. Physics of Fluids, 2007, 19(11): 115107

    Article  Google Scholar 

  14. Lin J Z, Shen S H. A theoretical model of turbulent fiber suspension and its application to the channel flow. Science China-Physics Mechanics & Astronomy, 2010, 53(9): 1659–1670

    Article  MathSciNet  Google Scholar 

  15. Sykes P, Rallison J M. Lubrication theory for a fiber suspension: Part 1, pressure-driven flow in a planar channel having slowly-varying cross-section. Journal of Non-Newtonian Fluid Mechanics, 1997, 71(1,2): 109–136

    Article  Google Scholar 

  16. Lin J Z, Zhang L X, Wang Y L. Research on the distribution function and orientation tensors of fiber suspensions in wedge-shaped flow field. Journal of Hydrodynamics. Ser. B, 2002, 14(1): 38–44

    Google Scholar 

  17. Krochak P J, Olson J A, Martinez D M. The orientation of semidilute rigid fiber suspensions in a linearly contracting channel. Physics of Fluids, 2008, 20(7): 073303

    Article  Google Scholar 

  18. Krochak P J, Olson J A, Martinez D M. Fiber suspension flow in a tapered channel: The effect of flow/fiber coupling. International Journal of Multiphase Flow, 2009, 35(7): 676–688

    Article  Google Scholar 

  19. Olson J A, Frigaard I, Chan C, Hämäläinen J P. Modeling a turbulent fibre suspension flowing in a planar contraction: The one-dimensional headbox. International Journal of Multiphase Flow, 2004, 30(1): 51–66

    Article  MATH  Google Scholar 

  20. Parsheh M, Brown ML, Aidun C K. On the orientation of stiff fibres suspended in turbulent flow in a planar contraction. Journal of Fluid Mechanics, 2005, 545(1): 245–269

    Article  MATH  Google Scholar 

  21. Parsheh M, Brown M L, Aidun C K. Investigation of closure approximations for fiber orientation distribution in contracting turbulent flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 136(1): 38–49

    Article  MATH  Google Scholar 

  22. Parsheh M, Brown M L, Aidun C K. Variation of fiber orientation in turbulent flow inside a planar contraction with different shapes. International Journal of Multiphase Flow, 2006, 32(12): 1354–1369

    Article  MATH  Google Scholar 

  23. Lin J Z, Zhang S L, Olson J A. Effect of fibers on the flow property of turbulent fiber suspensions in a contraction. Fibers and Polymers, 2007, 8(1): 60–65

    Article  Google Scholar 

  24. Hyensjo M, Dahlkild A. Study of the rotational diffusivity coefficient of fibers in planar contracting flows with varying turbulence levels. International Journal of Multiphase Flow, 2008, 34(9): 894–903

    Article  Google Scholar 

  25. Townsend P, Walters K. Expansion flows of non-newtonian liquids. Chemical Engineering Science, 1994, 49(5): 748–763

    Article  Google Scholar 

  26. Baloch A, Webster M F. A Computer-simulation of complex flows of fiber suspensions. Computers & Fluids, 1995, 24(2): 135–151

    Article  MATH  Google Scholar 

  27. Verweyst B E, Tucker C L III. Fiber suspensions in complex geometries: Flow/orientation coupling. Canadian Journal of Chemical Engineering, 2002, 80(6): 1093–1106

    Article  Google Scholar 

  28. Lu Z M, Khoo B C, Dou H S, Phan-Thien N, Seng Yeo K. Numerical simulation of fiber suspension flow through an axisymmetric contraction and expansion passages by Brownian configuration field method. Chemical Engineering Science, 2006, 61(15): 4998–5009

    Article  Google Scholar 

  29. Ku X K, Lin J Z. Fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions. Journal of Hydrodynamics, 2008, 20(6): 696–705

    Article  Google Scholar 

  30. Nsom B. Stability of fiber suspension flow in curved channel. Journal de Physique. II, 1996, 6(10): 1483–1492

    Article  Google Scholar 

  31. Chinesta F, Chaidron G. Short fibers suspension in steady recirculating flows. Canadian Journal of Chemical Engineering, 2002, 80(3): 355–362

    Article  Google Scholar 

  32. Chinesta F, Chaidron G, Poitou A. On the solution of Fokker-Planck equations in steady recirculating flows involving short fiber suspensions. Journal of Non-Newtonian Fluid Mechanics, 2003, 113(2,3): 97–125

    Article  MATH  Google Scholar 

  33. Chiba K, Ammar A, Chinesta F. On the fiber orientation in steady recirculating flows involving short fibers suspensions. Rheologica Acta, 2005, 44(4): 406–417

    Article  Google Scholar 

  34. Wan Z H, Lin J Z, You Z J. The effects of closure model of fiber orientation tensor on the instability of fiber suspensions in the Taylor-Couette flow. Modern Physics Letters B, 2007, 21(24): 1611–1625

    Article  MATH  Google Scholar 

  35. Zhang Q H, Lin J Z, Wang C X. Orientation distribution of fibers immersed in a curved expansion duct. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(11,12): 1585–1594

    Article  Google Scholar 

  36. Lin J Z, Zhang Q H, Zhang K. Rheological properties of fiber suspensions flowing through a curved expansion duct. Polymer Engineering and Science, 2010, 50(10): 1994–2003

    Article  Google Scholar 

  37. Bennington C P J, Kerekes R J, Grace J R. Motion of pulp fiber suspensions in rotary devices. Canadian Journal of Chemical Engineering, 1991, 69(1): 251–258

    Article  Google Scholar 

  38. Wang J, Silva C A, Viana J C, van Hattum F W J, Cunha A M, Tucker C L. Prediction of fiber orientation in a rotating compressing and expanding mold. Polymer Engineering and Science, 2008, 48(7): 1405–1413

    Article  Google Scholar 

  39. Zhang Q H, Li Y X, Lin J Z. Numerical simulation of cylinder orientation through a rotating straight expansion duct. Journal of Drainage and Irrigation Machinery Engineering, 2010, 5: 422–427

    Google Scholar 

  40. Zhang Q H, Lin J Z. Orientation distribution and rheological properties of fiber suspensions flowing through curved expansion and rotating ducts. Journal of Hydrodynamics. Ser. B, 2010, 22(5): 920–925

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Gao, X. & Lin, J. Cylindrical particulate internal flows: A review. Front. Mech. Eng. 7, 385–393 (2012). https://doi.org/10.1007/s11465-012-0354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-012-0354-z

Keywords

Navigation