Skip to main content
Log in

Uniqueness of weak solutions for fractional Navier-Stokes equations

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We prove that if u is a weak solution of the d dimensional fractional Navier-Stokes equations for some initial data u 0, and if u belongs to path space P = L q(0, T;B r p,∞ ) or P = L 1(0, T;B 1∞∞ ), then u is unique in the class of weak solutions whenα > 1. The main tools are Bony decomposition and Fourier localization technique. The results generalize and improve many recent known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in ℝn. Chin Ann Math Ser B, 1995, 4: 407–412

    Google Scholar 

  2. Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann Sci École Norm Sup, 1981, 2(4): 209–246

    MathSciNet  Google Scholar 

  3. Cannone M, Karch G. Incompressible Navier-Stokes equations in abstract Banach spaces. Sūrikaisekikenkyūsho Kōkyūroku, 2001, 1234: 27–41

    MathSciNet  Google Scholar 

  4. Chemin J Y. Perfect Incompressible Fluids. New York: Oxford University Press, 1998

    MATH  Google Scholar 

  5. Chen Q, Miao C, Zhang Z. On the uniqueness of weak solutions for the 3D Navier-Stokes equations. Ann Inst H Poincaré Anal Non Linéaire, 2009, 6: 2165–2180

    Article  MathSciNet  Google Scholar 

  6. Chen Q, Zhang Z. Space-time estimates in the Besov spaces and the Navier-Stokes equations. Methods Appl Anal, 2006, 1: 107–122

    Google Scholar 

  7. Cheskidov A, Shvydkoy R. On the regularity of weak solutions of the 3d Navier-Stokes equations in B −1∞∞ . arXiv: 0708.3067v2

  8. Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 5: 937–948

    Article  MathSciNet  Google Scholar 

  9. Gallagher I, Planchon F. On global infinite energy solutions to the Navier-Stokes equations in two dimensions. Arch Ration Mech Anal, 2002, 4: 307–337

    Article  MathSciNet  Google Scholar 

  10. Germain P. Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations. J Differential Equations, 2006, 2: 373–428

    Article  MathSciNet  Google Scholar 

  11. Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 2: 186–212

    Article  MathSciNet  Google Scholar 

  12. Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. arXiv: 1004.4287

  13. Iskauriaza L, Serëgin G, Shverak V. L 3, -solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat Nauk, 2003, 2: 3–44

    Article  Google Scholar 

  14. Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 2: 251–278

    Article  MathSciNet  Google Scholar 

  15. Kozono H, Shimada Y. Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math Nachr, 2004, 276: 63–74

    Article  MATH  MathSciNet  Google Scholar 

  16. Kozono H, Sohr H. Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis, 1996, 3: 255–271

    MathSciNet  Google Scholar 

  17. Kozono H, Taniuchi Y. Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 1: 191–200

    Article  MathSciNet  Google Scholar 

  18. Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach, 1969

    MATH  Google Scholar 

  19. Leray J. Sur le mouvement d’un liquids visqeux emplissant l’espace. Acta Math, 1934, 63: 193–248

    Article  MATH  MathSciNet  Google Scholar 

  20. Lions J L. Quelques résultats d’existence dans des équations aux dérivées partielles non linéaires. Bull Soc Math France, 1959, 87: 245–273

    MATH  MathSciNet  Google Scholar 

  21. Lions J L. Sur certaines équations paraboliques non linéaires. Bull Soc Math France, 1965, 93: 155–175

    MATH  MathSciNet  Google Scholar 

  22. Lions J L. Quelques méthodes de résolution des probl`emes aux limites non linéaires. Paris: Dunod, Gauthier-Villars, 1969

    Google Scholar 

  23. Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 1959, 48(4): 173–182

    Article  MATH  MathSciNet  Google Scholar 

  24. Ribaud F. A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations. Ann Fac Sci Toulouse Math, 2002, 2(6): 225–238

    Article  MathSciNet  Google Scholar 

  25. Serrin J. The Initial Value Problem for the Navier-Stokes Equations. Madison: Univ of Wisconsin Press, 1963, 69–98

    Google Scholar 

  26. Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970

    MATH  Google Scholar 

  27. Triebel H. Theory of Function Spaces. Monographs in Mathematics. Basel: Birkhäuser, 1983

    Book  Google Scholar 

  28. Wu H, Fan J. Weak-strong uniqueness for the generalized Navier-Stokes equations. Appl Math Lett, 2012, 3: 423–428

    Article  MathSciNet  Google Scholar 

  29. Wu J. Generalized MHD equations. J Differential Equations, 2003, 2: 284–312

    Article  Google Scholar 

  30. Wu J. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Diff Equ, 2004, 4: 381–400

    Article  Google Scholar 

  31. Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2006, 3: 803–831

    Article  Google Scholar 

  32. Young J P. Fractional Gagliardo-Nirenberg inequality. J Chungcheong Math Soc, 2011, 24: 583–586

    Google Scholar 

  33. Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 11(9): 1496–1514

    Article  Google Scholar 

  34. Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poincaré Anal Non Linéaire, 2007, 3: 491–505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Sun, X. Uniqueness of weak solutions for fractional Navier-Stokes equations. Front. Math. China 10, 33–51 (2015). https://doi.org/10.1007/s11464-014-0370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-014-0370-x

Keywords

MSC

Navigation